Chinese Journal of Lasers, Volume. 50, Issue 15, 1507103(2023)

Two-Photon Sub-Diffraction Multifocal Structured Illumination Microscopy

Xiaojuan Quan, Chenshuang Zhang, Danying Lin, Bin Yu*, and Junle Qu
Author Affiliations
  • Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
  • show less
    References(27)

    [1] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [2] Hess S T, Gould T J, Gunewardene M et al. Ultrahigh resolution imaging of biomolecules by fluorescence photoactivation localization microscopy[J]. Methods in Molecular Biology, 544, 483-522(2009).

    [3] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [4] Allen J R, Ross S T, Davidson M W. Structured illumination microscopy for superresolution[J]. ChemPhysChem, 15, 566-576(2014).

    [5] Gregor I, Enderlein J. Image scanning microscopy[J]. Current Opinion in Chemical Biology, 51, 74-83(2019).

    [6] York A G, Parekh S H, Nogare D D et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy[J]. Nature Methods, 9, 749-754(2012).

    [7] Ingaramo M, York A G, Wawrzusin P et al. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 5254-5259(2014).

    [8] Zhang C, Gao Y F, Ye S W et al. Application of adaptive optics in two-photon microscopic imaging[J]. Chinese Journal of Lasers, 50, 0307103(2023).

    [9] Fu R, Fang Y, Yang Y et al. Large-field microscopic imaging method based on cycle generative adversarial networks[J]. Acta Optica Sinica, 43, 0518002(2023).

    [10] Li H Y, Qu L Y, Hua Z J et al. Deep learning based fluorescence microscopy imaging technologies and applications[J]. Laser & Optoelectronics Progress, 58, 1811007(2021).

    [11] Liu H T, Yan Y B, Tan Q F et al. Theories for the design of diffractive superresolution elements and limits of optical superresolution[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 19, 2185-2193(2002).

    [12] Liu H T, Yan Y B, Jin G F. Design and experimental test of diffractive superresolution elements[J]. Applied Optics, 45, 95-99(2006).

    [13] Huang F M, Chen Y F, Garcia de Abajo F J et al. Optical super-resolution through super-oscillations[J]. Journal of Optics A: Pure and Applied Optics, 9, S285-S288(2007).

    [14] Huang F M, Kao T S, Zheludev N I. Superresolution without evanescent fields[C](2009).

    [15] Gerchberg R. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [16] Ogura Y, Aino M, Tanida J. Design and demonstration of fan-out elements generating an array of subdiffraction spots[J]. Optics Express, 22, 25196-25207(2014).

    [17] Ogura Y, Aino M, Tanida J. Diffractive fan-out elements for wavelength-multiplexing subdiffraction-limit spot generation in three dimensions[J]. Applied Optics, 55, 6371-6380(2016).

    [18] Zheludev N I, Yuan G H. Optical superoscillation technologies beyond the diffraction limit[J]. Nature Reviews Physics, 4, 16-32(2022).

    [19] Aharonov Y, Colombo F, Sabadini I et al. Some mathematical properties of superoscillations[J]. Journal of Physics A: Mathematical and Theoretical, 44, 365304(2011).

    [20] Wong A M H, Eleftheriades G V. Superoscillations without sidebands: power-efficient sub-diffraction imaging with propagating waves[J]. Scientific Reports, 5, 1-6(2015).

    [21] Hyvärinen H J, Rehman S, Tervo J et al. Limitations of superoscillation filters in microscopy applications[J]. Optics Letters, 37, 903-905(2012).

    [22] Berry M V. A note on superoscillations associated with Bessel beams[J]. Journal of Optics, 15, 044006(2013).

    [23] Berry M V. Exact nonparaxial transmission of subwavelength detail using superoscillations[J]. Journal of Physics A: Mathematical and Theoretical, 46, 205203(2013).

    [24] de Juana D M, Oti J E, Canales V F et al. Design of superresolving continuous phase filters[J]. Optics Letters, 28, 607-609(2003).

    [25] Liu J, Tan J B, Zhao C G. Convex objective function-based design method developed for minimizing side lobe[J]. Applied Optics, 47, 4061-4067(2008).

    [26] Sheppard C J R, Ledesma S, Campos J et al. Improved expressions for performance parameters for complex filters[J]. Optics Letters, 32, 1713-1715(2007).

    [27] Yu H H, Zhang C S, Lin D Y et al. Two-photon multifocal structured light microscopy based on high-speed phase-type spatial light modulator[J]. Acta Physica Sinica, 70, 098701(2021).

    Tools

    Get Citation

    Copy Citation Text

    Xiaojuan Quan, Chenshuang Zhang, Danying Lin, Bin Yu, Junle Qu. Two-Photon Sub-Diffraction Multifocal Structured Illumination Microscopy[J]. Chinese Journal of Lasers, 2023, 50(15): 1507103

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Feb. 1, 2023

    Accepted: Mar. 22, 2023

    Published Online: Aug. 8, 2023

    The Author Email: Yu Bin (yubin@szu.edu.cn)

    DOI:10.3788/CJL230480

    Topics