Journal of Innovative Optical Health Sciences, Volume. 17, Issue 6, 2450014(2024)

Metal reflector-enhanced thermoacoustic imaging as a guidance for puncture biopsy

Shuang Du1, Tao Qiang1, Zihui Chi1、*, and Huabei Jiang2、**
Author Affiliations
  • 1School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
  • 2Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
  • show less
    References(54)

    [1] H. Wang, S. Liu, T. Wang. Three-dimensional interventional photoacoustic imaging for biopsy needle guidance with a linear array transducer. J. Biophotonics, 12, e201900212(2019).

    [2] S. Kelly, F. Humby, A. Filer, N. Ng, M. D. Cicco, V. Rocher, M. Bombardieri, M. A. D’Agostino, I. B. McInnes, C. D. Buckley, P. C. Taylor, C. Pitzalis. Ultrasound-guided synovial biopsy: A safe, well-tolerated and reliable technique for obtaining high-quality synovial tissue from both large and small joints in early arthritis patients. Ann. Rheum. Dis., 74, 611-617(2015).

    [3] Y. Tsuha, H. Oshiro, K. Mizuta, T. Tamaki, Y. Tome, N. Wada, K. Nishida. Reconstruction of the lateral collateral ligament using the plantaris tendon after wide excision of soft tissue sarcoma of the knee: A case report. Mol. Clin. Oncol., 18, 23(2023).

    [4] D. C. Rockey, S. H. Caldwell, Z. D. Goodman, R. C. Nelson, A. D. Smith. Liver biopsy. Hepatology, 49, 1017-1044(2009).

    [5] R. K. Sterling, E. Lissen, N. Clumeck, R. Sola, M. C. Correa, J. Montaner, S. Sulkowski, F. J. Torriani, D. T. Dieterich, D. L. Thomas, D. Messinger, M. Nelson. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology, 43, 1317-1325(2006).

    [6] G. Hossein, P. Enrico. Thyroid nodules: Clinical importance, assessment, and treatment. Endocrinol. Metab. Clin. N. Am., 36, 707-735(2007).

    [7] M. D. Mattie, C. C. Benz, J. Bowers, K. Sensinger, L. Wong, G. K. Scott, V. Fedele, Ginzinger, R. Getts, C. Haqq. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer, 5, 24(2006).

    [8] L. C. Collins. Precision pathology as applied to breast core needle biopsy evaluation: Implications for management. Mod. Pathol., 34, 48-61(2021).

    [9] A. L. Tam, H. J. Lim, I. I. Wistuba. Image-guided biopsy in the era of personalized cancer care: Proceedings from the society of interventional radiology research consensus panel. J. Vasc. Interv. Radiol., 27, 8-19(2016).

    [10] E. Ziv, J. C. Durack, S. B. Solomon. The importance of biopsy in the era of molecular medicine. Cancer J., 22, 418(2016).

    [11] S. Wienbeck, J. Lotz, U. Fischer. Feasibility of vacuum-assisted breast cone-beam CT-guided biopsy and comparison with prone stereotactic biopsy. Am. J. Roentgenol., 208, 1154-1162(2017).

    [12] D. Jiao, N. Xie, G. Wu. C-arm cone-beam computed tomography with stereotactic needle guidance for percutaneous adrenal biopsy: Initial experience. Acta Radiol., 58, 617-624(2017).

    [13] M. Kriege, C. T. Brekelmans, I. M. Obdeijn. Factors affecting sensitivity and specificity of screening mammography and MRI in women with an inherited risk for breast cancer. Breast Cancer Res. Treat., 100, 109-119(2006).

    [14] D. A. Bluemke, C. A. Gatsonis, M. H. Chen. Magnetic resonance imaging of the breast prior to biopsy. J. Am. Med. Assoc., 292, 2735-2742(2004).

    [15] F. Porpiglia, E. Checcucci, D. Amparore. Percutaneous kidney puncture with three-dimensional mixed-reality hologram guidance: From preoperative planning to intraoperative navigation. Eur. Urol., 81, 588-597(2022).

    [16] J. Eyding, W. Wilkening, T. Postert. Brain perfusion and ultrasonic imaging techniques. Eur. J. Ultrasound, 16, 91-104(2002).

    [17] S. Lei, T. Ma, Z. Gao. Endoscopic ultrasound localization microscopy for the evaluation of the microvasculature of gastrointestinal tract tumors in rabbits. IEEE Trans. Biomed. Eng., 69, 3438-3448(2022).

    [18] S. Krishnamurthy, N. Sneige, D. G. Bedi. Role of ultrasound-guided fine needle aspiration of indeterminate and suspicious axillary lymph nodes in the initial staging of breast carcinoma. Cancer, 95, 982-988(2002).

    [19] G. Huang, J. Lv, Y. He. In vivo quantitative photoacoustic evaluation of the liver and kidney pathology in tyrosinemia. Photoacoustics, 28, 100410(2022).

    [20] B. Gong, J. Tang, X. Jiang. In situ fluorescence-photoacoustic measurement of the changes of brown adipose tissue in mice under hindlimb unloading. J. Appl. Physiol., 135, 251-259(2023).

    [21] J. Kang, J. H. Chang, S. M. Kim. Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: In vivo proof-of-principle and validation with nodal obstruction. Sci. Rep., 7, 45008(2017).

    [22] L. Ni, W. Lin, A. Kasputis. Assessment of prostate cancer progression using a translational needle photoacoustic sensing probe: Preliminary study with intact human prostates ex-vivo. Photoacoustics, 28, 100418(2022).

    [23] H. Zhang, M. Ren, Y. Wang. A high-efficient excitation-detection thermoacoustic imaging probe for breast tumor detection. Med. Phys., 50, 1670-1679(2023).

    [24] G. Ku, L. V. Wang. Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast. Med. Phys., 28, 4-10(2001).

    [25] R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, G. A. Kruger. Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study. Radiology, 216, 279-283(2000).

    [26] X. Wang, T. Qin, R. S. Witte, H. Xin. Computational feasibility study of contrast-enhanced thermoacoustic imaging for breast cancer detection using realistic numerical breast phantoms. IEEE. Trans. Microw. Theory. Tech., 63, 1489-1501(2015).

    [27] S. K. Patch, D. Hull, M. Thomas, S. K. Griep, K. Jacobsohn, W. A. See. Thermoacoustic contrast of prostate cancer due to heating by very high frequency irradiation. Phys. Med. Biol., 60, 689-708(2015).

    [28] Z. Chi, Y. Zhao, J. Yang, T. Li, G. Zhang, H. Jiang. Theroacoustic tomography of in vivo human finger joints. IEEE. Trans. Biomed. Eng., 66, 1598-1608(2019).

    [29] Z. Chi, L. Huang, S. Ge, H. Jiang. Anti-phase microwave illumination-based thermoacoustic tomography of in vivo human finger joints. Med. Phys., 46, 2363-2369(2019).

    [30] X. Wang, L. Huang, Z. Chi, H. Jiang. Microwave-induced thermoacoustic tomography for imaging human thyroid. Prog. Biochem. Biophys., 46, 73-80(2019).

    [31] Y. S. Cui, C. Yuan, Z. Ji. A review of microwave-induced thermoacoustic. J. Innov. Opt. Health Sci., 10, 1730007(2017).

    [32] Q. Liu, X. liang, W. Z. Qi, Y. B. Gong, H. B. Jiang, L. Xi. Biomedical microwave-induced thermoacoustic imaging. J. Innov. Opt. Health Sci., 15, 2230007(2022).

    [33] G. J. Huang, Y. J. Li, M. Y. Ren, H. M. Zhang, H. Qin. Real-time thermoacoustic imaging for breast tumor biomarker biopsy navigation basing on a semi-ring ultrasonic transduce. Appl. Phys. Lett., 123, 183702(2023).

    [34] L. Li, L. Zhu, C. Ma. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nat. Biomed., 1, 0071(2017).

    [35] I. V. Larina, K. V. Larin, R. O. Esenaliev. Real-time optoacoustic monitoring of temperature in tissues. J. Phys. D: Appl. Phys., 38, 2633-2639(2005).

    [36] F. A. Duck. Physical Properties of Tissue(1990).

    [37] M. Converse, E. J. Bond, S. C. Hagness, B. D. V. Veen. Ultrawideband microwave space-time beamforming for hyperthermia treatment of breast cancer: A computational feasibility study. IEEE. Trans. Microw. Theory Tech., 52, 1876-1889(2004).

    [38] D. J. Griffiths. Introduction to Electrodynamics(2023).

    [40] J. Song, Z. Q. Zhao, J. G. Wang, X. Z. Zhu, J. N. Wu, Z. P. Nie, Q. H. Liu. Evaluation of contrast enhancement by carbon nanotubes for microwave-induced thermoacoustic tomography. IEEE. Trans. Biomed. Eng., 62, 930-938(2015).

    [41] M. Soltani, R. Rahpeima, F. M. Kashkooli. Breast cancer diagnosis with a microwave thermoacoustic imaging technique — A numerical approach. Med. Biol. Eng. Comput., 57, 1497-1513(2019).

    [42] L. Huang, Z. Liang, S. Q. Qiao, W. P. Wang. Microwave-induced thermoacoustic elastic imaging: A simulation study. J. Innov. Opt. Health Sci., 17, 2350013(2023).

    [43] L. Yao, G. F. Guo, H. B. Jiang. Quantitative microwave-induced thermoacoustic tomography. Med. Phys., 37, 3752-3759(2010).

    [44] A. Mulyasuryani, A. Srihardiastutie. Conductimetric biosensor for the detection of uric acid by immobilization Uricase on Nata de coco membrane — Pt electrode. Anal. Chem. Insights, 6, ACI-S7346(2011).

    [45] A. Chhana, G. Lee, N. Dalbeth. Factors influencing the crystallization of monosodium urate: A systematic literature review. BMC Musculoskelet. Disord., 16, 296(2015).

    [46] Y. He, Y. C. Shen, X. H. Feng, C. J. Liu, L. V. Wang. Homogenizing microwave illumination in thermoacoustic tomography by a linear-to-circular polarizer based on frequency selective surfaces. Appl. Phys. Lett., 111, 063703(2017).

    [47] C. Gabriel, S. Gabriel, E. Corthout. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol., 41, 2231-2249(1996).

    [48] S. Gabriel, R. W. Lau, S. Gabriel. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GH. Phys. Med. Biol., 41, 2251-2269(1996).

    [49] Q. Liu, X. Liang, T. Li, W. A. Chao, W. Z. Qi, T. Jin, Y. B. Gong, H. B. Jiang, L. Xi. Split ring resonator topology based microwave induced thermoacoustic imaging (SRR-MTAI). IEEE. Trans. Med. Imaging, 42, 2425-2438(2023).

    [50] J. N. Li, B. S. Wang, D. J. Zhang, C. Z. Li, Y. H. Zhu, Y. Zou, B. L. Chen, T. Wu, X. Wang. A preclinical system prototype for focused microwave breast hyperthermia guided by compressive thermoacoustic tomography. IEEE. Trans. Biomed. Eng., 68, 2289-2300(2021).

    [51] Z. Yu, F. Chao, Y. Zeng, T. Li, S. Jin. Wireless communication using metal reflectors: Reflection modelling and experimental verification. IEEE Int. Conf. Communications, 4701-4706(2023).

    [52] D. Pozar. Microwave Engineering(2012).

    [53] M. Xu, L. Wang. Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging, 21, 814-822(2002).

    [54] X. Wang, L. Huang, Z. Chi, H. Jiang. Integrated thermoacoustic and ultrasound imaging based on the combination of a hollow concave transducer array and a linear transducer array. Phys. Med. Biol., 66, 115011(2021).

    [55] A. Dima, V. Ntziachristos. Non-invasive carotid imaging using optoacoustic tomography. Opt. Express, 20, 25044-25057(2012).

    Tools

    Get Citation

    Copy Citation Text

    Shuang Du, Tao Qiang, Zihui Chi, Huabei Jiang. Metal reflector-enhanced thermoacoustic imaging as a guidance for puncture biopsy[J]. Journal of Innovative Optical Health Sciences, 2024, 17(6): 2450014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 7, 2024

    Accepted: Jun. 2, 2024

    Published Online: Nov. 13, 2024

    The Author Email: Zihui Chi (zhchi92325@foxmail.com), Huabei Jiang (hjiang1@usf.edu)

    DOI:10.1142/S1793545824500147

    Topics