Chinese Journal of Lasers, Volume. 51, Issue 1, 0102001(2024)

Development of Refractory High Entropy Alloys by Laser Additive Manufacturing: Regulating Material Properties and Manufacturing Processes (Invited)

Dichen Li1,2、*, Hang Zhang1,2、**, and Jianglong Cai1,2
Author Affiliations
  • 1State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • 2School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • show less
    Figures & Tables(20)
    Typical thermal cracks[35-37]. (a)(b) Solidification cracks with irregular dendritic morphology; (c)(d) liquefaction cracks without dendritic characteristics; (e)(f) solidification cracks; (g)(h) morphology and dislocation maps of the liquefaction crack region; (i)‒(k) single pass of LPBFed AA7075 alloy shows different pool shapes and thermal crack sensitivities
    Typical pores[32,57-58]. (a) Unfused and metallurgical pores; (b) keyhole pore; (c) shrinkage pores; (d) schematic diagrams of pore formation mechanism in LDED process
    Principle of high flux forming[74]
    High entropy alloy phase with high flux forming[74]. (a) XRD patterns; (b) measured composition versus predicted composition; (c) SEM image and elemental mapping
    Backscatter image of sample section and grain direction of welded structure section obtained by electron backscatter diffraction (EBSD)
    Tensile property curves of TiNbCrVNi alloy[90]
    Cross-section morphology of thin-walled parts under different process parameters[84]. (a) 2.8 J/mm; (b) 3.2 J/mm; (c) 3.6 J/mm; (d) 4.0 J/mm; (e) 4.4 J/mm
    Performance test results of the samples under different processing parameters[84]. (a) Average microhardness of alloy cross-section; (b) engineering stress-strain curves of the alloy under compression at room temperature
    LPBF forming process and geometric relationship between parameters[72]. (a) Simplified LPBF forming process. Geometric relationship between the layer thickness c and the channel spacing d for the following cases: (b) ml¯ <c, (c) ml¯ >c, and (d) ml¯ =c
    Temperature distribution in the micro-region (4 mm×2 mm×1 mm) around the 200 s laser spot of LPBF process[92]
    LPBF formed samples[89]
    Tensile samples formed by LPBF(after polishing)[89]
    Original sample formed by LDED[76]
    Warping deformation of HEA formed by LPBF without improvement[92]
    Samples formed by improved LPBF forming [92]
    Z-shape (left) and strip (right) scanning strategies[93]
    Nb3Ta3Mo(Ti2Ni)3 high entropy alloy impeller entity formed by LPBF[93]
    • Table 1. Compression properties of AMed RHEAs

      View table

      Table 1. Compression properties of AMed RHEAs

      ProcessCompositionCompressive yield strength Rec/MPaCompressive strength Rmc /MPaCompressive strain εtc /%Ref.
      SEBMWTaRe(in building direction)1181±711571±7116.60±1.8379
      SEBMWTaRe(perpendicular to building direction)1343±191762±4019.45±1.0579
      LDEDTaMoNb87411405.880
      LDEDW0.16TaMoNb8008402.580
      LDEDW0.33TaMoNb8108953.280
      LDEDW0.53TaMoNb8088903.480
      LPBFNbMoTaW119612374.681
      LPBF(NbMoTaW)99.5C0.517251728781
      LDEDTiZrNbHfTa(Stock 1)1460±30~19002282
      LDEDTiZrNbHfTa(Stock 2)1105±10>4082
      LDEDTiZrNb795±4>4082
      LDEDTi27Zr27Nb27Hf9.5Ta9.5910±50>4082
      LDEDTi42Zr22Nb22Hf7Ta7840±30>4082
      LPBFNbMoTa1252.561282.941571
      LPBFNbMoTaTi1201.481380.272371
      LPBFNbMoTaNi1350.191356.191171
      LPBFNbMoTaTi0.5Ni0.51750.462277.791571
      LPBFWTaMoNbV1391±16683
      LDEDCNTs/CoCrMoNbTi0.42110.52.3984
      LPBFRHEA011277.351597.629.587
      LPBFAl10Nb15Ta5Ti30Zr4014001700>4585
      LDEDAlMo0.5NbTa0.5TiZr2000236886
      LPBFNbMoTaTiNi1728275321.7588
      LPBFNbMoTaTiNi(HT1200)1502259633.5588
      LPBFNb3Ta3(Ti2Ni)4395±36>5089
      LPBFNb3Ta3Mo(Ti2Ni)3915±47>5089
      LPBFNb3Ta3Mo2(Ti2Ni)21285±56244727.1±2.689
    • Table 2. Tensile properties of AMed RHEAs

      View table

      Table 2. Tensile properties of AMed RHEAs

      ProcessCompositionTensile yield strength Re /MPaTensile strength Rm /MPaElongation after fracture A /%Ref.
      LPBFNbMoTaTiNi12050.8288
      LPBFNbMoTaTiNi(HT1100)11051.188
      LPBFNb3Ta3(Ti2Ni)4671±311036±179.2±0.689
      LPBFNb3Ta3Mo(Ti2Ni)31184±221403±354.4±0.789
      LPBFNb3Ta3Mo2(Ti2Ni)21212±160.82±0.0689
      LDEDTiNbCrVNi85210212.390
      LDEDTiZrHfNb0.878213.191
      LDEDTiZrHfNb10481091
      LDEDTiZrHfNb(in horizontal direction)103418.591
    • Table 3. Compression properties of AMed RHEAs at high temperature

      View table

      Table 3. Compression properties of AMed RHEAs at high temperature

      ProcessCompositionRec /MPaRmc /MPaεtc /%Ref.
      LDEDTaMoNb(1000 ℃)5306848.580
      LPBFNbMoTaTi0.5Ni0.5 (600 ℃)1279.341669.7528.4271
      LPBFNbMoTaTi0.5Ni0.5(800 ℃)756.921033.632871
      LPBFNbMoTaTi0.5Ni0.5(1000 ℃)554.61651.361171
      LPBFRHEA01(600 ℃)1131.421207.21887
      LPBFRHEA01(800 ℃)693.341150.531087
      LPBFRHEA01(1000 ℃)724.45993.841087
    Tools

    Get Citation

    Copy Citation Text

    Dichen Li, Hang Zhang, Jianglong Cai. Development of Refractory High Entropy Alloys by Laser Additive Manufacturing: Regulating Material Properties and Manufacturing Processes (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0102001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Sep. 15, 2023

    Accepted: Nov. 13, 2023

    Published Online: Jan. 19, 2024

    The Author Email: Li Dichen (dcli@mail.xjtu.edu.cn), Zhang Hang (zhanghangmu@mail.xjtu.edu.cn)

    DOI:10.3788/CJL231215

    CSTR:32183.14.CJL231215

    Topics