Optics and Precision Engineering, Volume. 32, Issue 18, 2846(2024)
Multi-scale polyp segmentation network employing cascaded strategy to fuse boundary features
[1] [1] 贾立新, 胡奕标, 金燕, 等. 融合多种注意力机制的结直肠息肉分割神经网络[J]. 计算机辅助设计与图形学学报, 2023, 35(3): 463-473.JIAL X, HUY B, JINY, et al. Polyp segmentation network combined with multi-attention mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(3): 463-473.(in Chinese)
[2] XIA P, ZHANG G Y, LEI B J et al. Polyp image segmentation based on multi-scale ResNeSt-50 aggregation network and message passing[J]. Opt. Precision Eng., 31, 2765-2780(2023).
[3] LIANG L M, HE A J, LI R J et al. Cross-scale and cross-dimensional adaptive transformer network for colorectal polyp segmentation[J]. Opt. Precision Eng., 31, 2700-2712(2023).
[4] HU K L, ZHAO L P, FENG S et al. Colorectal polyp region extraction using saliency detection network with neutrosophic enhancement[J]. Computers in Biology and Medicine, 147, 105760(2022).
[5] LI W S, HUANG Z P, LI F Y et al. CIFG-Net: cross-level information fusion and guidance network for Polyp Segmentation[J]. Computers in Biology and Medicine, 169, 107931(2024).
[6] MA H C, XU C, NIE C et al. DBE-net: dual boundary-guided attention exploration network for polyp segmentation[J]. Diagnostics, 13, 896(2023).
[7] [7] 梁礼明, 周珑颂, 冯骏, 等. 基于高分辨率复合网络的皮肤病变分割[J]. 光学 精密工程, 2022, 30(16): 2021-2038. doi: 10.37188/ope.20223016.2021LIANGL M, ZHOUL S, FENGJ, et al. Skin lesion segmentation based on high-resolution composite network[J]. Opt. Precision Eng., 2022, 30(16): 2021-2038.(in Chinese). doi: 10.37188/ope.20223016.2021
[8] [8] 王雪, 李占山, 吕颖达. 基于多尺度感知和语义适配的医学图像分割算法[J]. 吉林大学学报(工学版), 2022, 52(3): 640-647.WANGX, LIZH SH, LÜY D. Medical image segmentation based on multi-scale context-aware and semantic adaptor[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(3): 640-647.(in Chinese)
[9] [9] 支佩佩,邓健志,钟震霄. 基于卷积和注意力机制的医学细胞核图像分割网络[J]. 生物医学工程学杂志, 2022, 39(4): 730-739.ZHIP P, DENGJ Z, ZHONGZ X. Medical nucleus image segmentation network based on convolution and attention mechanism[J]. Journal of Biomedical Engineering, 2022, 39(4): 730-739.(in Chinese)
[10] LECUN Y, BOSER B, DENKER J S et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1, 541-551(1989).
[11] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651(2017).
[12] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C], 234-241(2015).
[13] [13] 徐昌佳, 易见兵, 曹锋, 等. 采用DoubleUNet网络的结直肠息肉分割算法[J]. 光学 精密工程, 2022, 30(8): 970-983. doi: 10.37188/ope.20223008.0970XUC J, YIJ B, CAOF, et al. Colorectal polyp segmentation algorithm using DoubleUNet network[J]. Opt. Precision Eng., 2022, 30(8): 970-983.(in Chinese). doi: 10.37188/ope.20223008.0970
[14] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N et al. UNet++: a nested U-net architecture for medical image segmentation[C], 11045, 3-11(2018).
[15] FAN D P, JI G P, ZHOU T et al. PraNet: Parallel reverse attention network for polyp segmentation[C], 263-273(2020).
[16] LIU Y, YANG Y, JIANG Y Q et al. Multi-view orientational attention network combining point-based affinity for polyp segmentation[J]. Expert Systems with Applications, 249, 123663(2024).
[17] MUHAMMAD Z U D, MUHAMMAD U, HUANG Z J et al. MMFIL-Net: multi-level and multi-source feature interactive lightweight network for polyp segmentation[J]. Displays, 81, 102600(2024).
[18] JAIN S, ATALE R, GUPTA A et al. CoInNet: a convolution-involution network with a novel statistical attention for automatic polyp segmentation[J]. IEEE Transactions on Medical Imaging, 42, 3987-4000(2023).
[19] SHARMA V, KUMAR A et al. ControlPolypNet: towards controlled colon polyp synthesis for improved polyp segmentation[C], 2325-2334(2024).
[20] LIN T Y, DOLLÁR P, GIRSHICK R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[21] SU Y Z, XIE Q S, YE J et al. An accurate polyp segmentation framework via feature secondary fusion[C], 1-5(2023).
[22] ZHAO X Q, ZHANG L H, LU H C. Automatic polyp segmentation via multi-scale subtraction network[C], 120-130(2021).
[24] LI Y X, LI X, YANG J. Spatial Group-Wise Enhance: enhancing semantic feature learning in CNN[C], 316-332(2023).
[25] GAO S H, CHENG M M, ZHAO K et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2021).
[26] ZHANG Z J, FU H Z, DAI H et al. ET-net: A generic edge-attention guidance network for medical image segmentation[C], 442-450(2019).
[27] FAN D P, ZHOU T, JI G P et al. Inf-net: automatic COVID-19 lung infection segmentation from CT images[J]. IEEE Transactions on Medical Imaging, 39, 2626-2637(2020).
[28] CHEN X K, LIN K Y, WANG J B et al. Bi-directional Cross-Modality Feature Propagation with Separation-and-Aggregation Gate for RGB-D Semantic Segmentation[C], 561-577(2020).
[29] ZHOU T, ZHOU Y, HE K L et al. Cross-level feature aggregation network for polyp segmentation[J]. Pattern Recognition, 140, 109555(2023).
[30] YANG L, ZHAI C X, LIU Y H et al. CFHA-Net: a polyp segmentation method with cross-scale fusion strategy and hybrid attention[J]. Computers in Biology and Medicine, 164, 107301(2023).
[31] WEI J, WANG S H, HUANG Q M. F³Net: fusion, feedback and focus for salient object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12321-12328(2020).
[32] BERNAL J, SÁNCHEZ F J, FERNÁNDEZ-ESPARRACH G et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation
[33] SMEDSRUD P H, RIEGLER M A et al. Kvasir-SEG: a segmented polyp dataset[C], 451-462(2020).
[34] VÁZQUEZ D, BERNAL J, SÁNCHEZ F J et al. A benchmark for endoluminal scene segmentation of colonoscopy images[J]. Journal of Healthcare Engineering, 2017, 4037190(2017).
[35] TAJBAKHSH N, GURUDU S R, LIANG J M. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Transactions on Medical Imaging, 35, 630-644(2016).
[36] SILVA J, HISTACE A, ROMAIN O et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer[J]. International Journal of Computer Assisted Radiology and Surgery, 9, 283-293(2014).
[37] LV Y Q, ZHANG J, DAI Y C et al. Simultaneously localize, segment and rank the camouflaged objects[C], 11586-11596(2021).
[38] FANG Y Q, CHEN C, YUAN Y X et al. Selective feature aggregation network with area-boundary constraints for polyp segmentation[C], 302-310(2019).
[39] LOU A, GUAN S, LOEW M. CaraNet: context axial reverse attention network for segmentation of small medical objects[J]. Journal of Medical Imaging (Bellingham, Wash), 10(2023).
[40] CHEN H P, LYU Y D et al. BLE-Net: boundary learning and enhancement network for polyp segmentation[J]. Multimedia Systems, 29, 3041-3054(2023).
Get Citation
Copy Citation Text
Jianbing YI, Jianhui WAN, Feng CAO, Jun LI, Xin CHEN. Multi-scale polyp segmentation network employing cascaded strategy to fuse boundary features[J]. Optics and Precision Engineering, 2024, 32(18): 2846
Category:
Received: Apr. 21, 2024
Accepted: --
Published Online: Nov. 18, 2024
The Author Email: Jianbing YI (yijianbing8@jxust.edu.cn)