Chinese Journal of Lasers, Volume. 33, Issue 7, 865(2006)
Ultraintense Solid-State Lasers and Applications to the Frontiers of Sciences
[1] [1] T. Tajima, G. Mourou. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics [J]. Phy. Rev., ST-accelerators and Beams, 2002, 5(3):031301-1~031301-9
[2] [2] D. Umstadter. Review of physics and applications of relativistic plasmas driven by ultra-intense lasers [J]. Phys. Plasmas, 2001, 8(5):1774~1785
[3] [3] T. Ditmire, S. Bless, G. Dyer et al.. Overview of future directions in high energy-density and high-field science using ultra-intense lasers [J]. Rad. Phys. and Chem., 2004, 70:535~552
[4] [4] T. Tajima, J. M. Dawson. Laser electron acceleration [J]. Phys. Rev. Lett., 1979, 43(4):267~270
[5] [5] C. E. Clayton, C. Joshi, C. Darrow et al.. Relativistic plasma-wave excitation by collinear optical mixing [J]. Phys. Rev. Lett., 1985, 53(21):2343~2346
[6] [6] Y. Kitagawa, T. Matsumoto, T. Minamihata et al.. Beat wave excitation of plasma wave and observation of accelerated elesctrons [J]. Phys. Rev. Lett., 1992, 68(1):48~51
[7] [7] C. E. Clayton, K. A. Marsh, A. Dyson et al.. Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves [J]. Phys. Rev. Lett., 1993, 70(1):37~40
[8] [8] P. Sprangle, E. Esarey, J. Krall et al.. Propagation and guiding of intense laser pulses in plasmas [J]. Phys. Rev. Lett., 1992, 69(15):2200~2203
[9] [9] T. M. Antonsen,Jr, P. Mora. Self-focusing and Raman scattering of laser pulses in tenuous plasmas [J]. Phys. Rev. Lett., 1992, 69(15):2204~2207
[10] [10] S. P. D. Mangles, C. D. Murphy, Z. Najmudin et al.. Monoenergetic beams of relativistic electrons from intense laser-plasma interaction [J]. Nature, 2004, 431(7008):535~538
[11] [11] C. G. R. Geddes, Cs. Toth, J. van Tilborg et al.. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding [J]. Nature, 2004, 431(7008):538~541
[12] [12] J. Faure, Y. Glinec, A. Pukhov et al.. A laser-plasma accelerator producing monoenergetic electron beams [J]. Nature, 2004, 431(7008):541~544
[13] [13] T. Hosokai, K. Kenoshita, A. Zhidkov et al.. Refraction effects of the cavity formation and interaction of an intense ultra-short pulse with a gas jet [J]. Phys. Plasmas, 2004, 11(10):L57~L60
[14] [14] M. Kando, S. Masuda, A. Zhidkov et al.. Electron acceleration by a nonlinear wakefield generated by ultrashort (23-fs) high-peak-power laser pulses in plasma [J]. Phys. Rev.E, 2005, 71(1):015403-1~015403-4
[15] [15] S. C. Wilks, A. B. Langdon, T. E. Cowan et al.. Energetic protons generation in ultra-intense laser-solid interactions [J]. Phys. Plasmas, 2001, 8(2):542~549
[16] [16] R. A. Anavely, M. H. Key, S. P. Hatchett et al.. Intense high-energy proton beams from petawatt-laser irradiation of solids [J]. Phys. Rev. Lett., 2000, 85(14):2945~2948
[17] [17] S. P. Hatchett, C. G. Brown, T. C. Cowan et al.. Electron,photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets [J]. Phys. Plasmas, 2000, 7(5):2076~2082
[18] [18] E. L. Clark, K. Krushelnick, J. R. Davies et al.. Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids [J]. Phys. Rev. Lett., 2000, 84(4):670~673
[19] [19] F. N. Beg, M. S. Wei, A. E. Dangor et al.. Target charging effects on proton acceleration during high-intensity short-pulse laser-solid interactions [J]. Appl. Phys. Lett., 2004, 84(15):2766~2768
[20] [20] F. N. Beg, M. S. Wei, E. L. Clark et al.. Return current and proton emission from short pulse laser interactions with wire targets [J]. Phys. Plasmas, 2004, 11(5):2806~2813
[21] [21] Y. Murakami, Y. Kitagawa, Y. Sentoku et al.. Observation of protons rear emission and possible gigagauss scale magnetic fields from ultra-intense laser illuminated plastic target [J]. Phys. Plasmas, 2001, 8(9):4138~4143
[22] [22] A. Pukhov. Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser [J]. Phys. Rev. Lett., 2001, 86(16):3562~3565
[23] [23] J. Fuchs, Y. Sentoku, S. Karsch et al.. Comparison of laser ion acceleration from front and rear surfaces of thin foils [J]. Phys. Rev. Lett., 2005, 94(4):045004-1~045004-4
[24] [24] M. Allen, P. K. Patel, A. Mackinnon et al.. Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils [J]. Phys. Rev. Lett., 2004, 93(26):265004-1~265004-4
[25] [25] E. d′Humieres, E. Lefebvre, L. Gremillet et al.. Proton acceleration mechanisms in high-intensity laser interaction with thin foils [J]. Phys. Plasmas, 2005, 12(6):062704-1~062704-13
[26] [26] Y. T. Li, Z. M. Sheng, Y. Y. Ma et al.. Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams [J]. Phys. Rev. E, 2005, 72(6):066404-1~066404-7
[27] [27] A. J. Mackinnon, Y. Sentoku, P. K. Patel et al.. Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses [J]. Phys. Rev. Lett., 2002, 88(21):215006-1~215006-4
[28] [28] A. Maksimchuk, S. Gu, K. Flippo et al.. Forward ion acceleration in thin films driven by a high-intensity laser [J]. Phys. Rev. Lett., 2000, 84(18):4108~4111
[29] [29] S. Fritzler, V. Malka, G. Grillon et al.. Proton beams generated with high-intensity lasers: applications to medical isotope production [J]. Appl. Phys. Lett., 2003, 83(15):3039~3041
[30] [30] X. F. Wang, K. Nemoto, T. Nayuki et al.. Effect of plasma peak density on energetic proton emission in ultrashort high-intensity laser-foil interactions [J]. Phys. Plasmas, 2005, 12(11):113101-1~113101-6
[31] [31] Y. Oishi, T. Nayuki, T. Fujii et al.. Dependence on laser intensity and pulse duration in proton acceleration by irradiation of ultrashort laser pulses on a Cu foil target [J]. Phys. Plasmas, 2005, 12:073102-1~073102-5
[32] [32] B. M. Hegelich, B. J. Albright, J. Cobble et al.. Laser acceleration of quasi-monoenergetic MeV ion beams [J]. Nature, 2006, 439(7075):441~444
[33] [33] H. Schwoerer, S. Pfotenhauer, O. Jackel et al.. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets [J]. Nature, 2006, 439(7075):445~448
[34] [34] M. Kaluza, J. Schreiber, M. I. K. Santala et al.. Influence of the laser prepulse on proton acceleration in thin-foil experimants [J]. Phys. Rev. Lett., 2004, 93(4):045003-1~045003-4
[35] [35] E. Fourkal, I. Velchev, C. M. Ma. Coulomb explosion effect and the maximum energy of protons accelerated by high-power lasers [J]. Phys. Rev. E, 2005, 71(3-2B):036412-1~036412-11
[36] [36] T. Esirkepov, M. Borghesi, S. V. Bulanov et al.. Highly efficient relativistic-ion generation in the laser-piston regime [J]. Phys. Rev. Lett., 2004, 92(17):175003-1~175003-4
[37] [37] K. W. D. Ledingham, P. McKenna, R. P. Singhal. Applications for nuclear phenomena generated by ultra-intense lasers [J]. Scince, 2003, 300(5622):1107~1111
[38] [38] T. Ditmire, J. Zweibeck, V. D. Yanovsky et al.. Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters [J]. Nature, 1999, 398(6727):489~491
[39] [39] J. Zweibeck, R. A. Smith, T. E. Cowan et al.. Nuclear fusion driven by Coulomb explosion of large deuterium clusters [J]. Phys. Rev. Lett., 2000, 84(12):2634~2637
[40] [40] J. Zweibeck, T. E. Cowan, J. H. Hartley et al.. Detailed study on nuclear fusion from femtosecond laser-drive explosions of deuterium clusters [J]. Phys. Plasmas, 2002, 9(7):3108~3120
[41] [41] Y. Kishimoto, T. Masaki, T. Tajima. High energy ions and nuclear fusion in laser-clustre interaction [J]. Phys. Plasmas, 2002, 9(2):589~601
[42] [42] G. Grillon, Ph. Balcou, J. P. Chambaret et al.. Deuterium-deuterium fusion dynamics in low-density molecular-cluster jets irradiated by intense ultrafast laser pulses [J]. Phys. Rev. Lett., 2002, 89(6):065005-1~065005-4
[43] [43] K. W. Madison, P. K. Patel, M. Allen et al.. Investigation of fusion yield from exploding deuterium-cluster plasmas produced by 100-TW laser pulses [J]. J. Opt. Soc. Am. B, 2003, 20(1):113~117
[44] [44] M. Hohenberger, D. R. Symes, K. W. Madison et al.. Dynamic acceleration effects in explosions of laser-irradiated heteronuclear clusters [J]. Phys. Rev. Lett., 2005, 95(19):195003-1~195003-4
[45] [45] I. Last, J. Jortner. Ultrafast high-energy dynamics of thin spherical shell of light ions in the Coulomb explosion of heteroclusters [J]. Phys. Rev. A, 2005, 71(6):063204-1~063204-10
[46] [46] K. Y. Kim, I. Alexeev, H. M. Milchberg. Measurement of ultrafast dynamics in the interaction of intense laser pulses with gases, clusters, plasma waveguides [J]. Phys. Plasmas, 2005, 12(5):056712-1~056712-7
[47] [47] I. Last, J. Jortner. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. Ⅳ. Coulomb explosion of molecular heteroclusters [J]. J. Chem. Phys., 2004, 121(17):8329~8342
[48] [48] J. M. Yang, P. McKenna, K. W. D. Ledingham et al.. Neutron production by fast protons from ultraintense laser-plasma interactions [J]. J. Appl. Phys., 2004, 96(11):6912~6918
[49] [49] J. M. Yang, K. W. D. Ledingham, P. McKenna et al.. Nuclear reactions in copper induced by protons from a petawatt laser-foil interactions [J]. Appl. Phys. Lett., 2004, 84(5):675~677
[50] [50] R. W. Schoenlein, W. P. Leemans, A. H. Chin et al.. Femtosecond X-ray pulses at 0.4 generated by 900 Thomson scattering: a tool for producing the structural dynamics of materials [J]. Science, 1996, 274(5285):236~238
[51] [51] F. V. Hartemann. High-intensity scattering processes of relativistic electrons in vacuum [J]. Phys. Plasmas, 1998, 5(5):2037~2047
[52] [52] F. He, Y. Y. Lau, D. P. Umstadter et al.. Phase dependence of Thomson scattering in an ultraintense laser field [J]. Phys. Plasmas, 2002, 9(10):4325~4329
[53] [53] F. He, Y. Y. Lau, D. P. Umstadter et al.. Backscattering of an intense laser beam by an electron [J]. Phys. Rev. Lett., 2003, 90(5):005002-1~005002-4
[54] [54] Y. Y. Lau, F. He, D. P. Umstadter et al.. Nonlinear Thomson scattering: a tutorial [J]. Phys. Plasmas, 2003, 10(5):2155~2162
[55] [55] G. A. Krafft. Spectral distribution of Thomson-scattering photons from high-intensity pulsed lasers [J]. Phys. Rev. Lett., 2004, 92(20):204802-1~204802-4
[56] [56] J. Gao. Thomson scattering from ultrashort and ultraintense laser pulses [J]. Phys. Rev. Lett., 2004, 93(24):243001-1~243001-4
[57] [57] G. A. Krafft, A. Doyuran, J. B. Rosenzweig. Pulsed-laser nonlinear scattering for general scattering geometries [J]. Phys. Rev. E, 2005, 72(5):056502-1~056502-10
[58] [58] K. T. Phuoc, F. Burgy, J.-P. Rousseau et al.. Laser based synchrotron radiation [J]. Phys. Plasmas, 2005, 12(2):023101-1~023101-8
[59] [59] T. Cowan, T. Ditmire, G. L. Sage. Intense laser-electron interaction [R]. LLNL, UCRL-MI-135159
[60] [60] N. M. Naumova, J. A. Nees, I. V. Sokolov et al.. Relativistic generation of isolated attosecond pulses in a λ3 focal volume [J]. Phys. Rev. Lett., 2004, 92(6):063902-1~063902-4
[61] [61] N. M. Naumova, J. A. Nees, A. Mourou. Relativistic attosecond physics [J]. Phys. Plasmas, 2005, 12(5):056707-1~056707-5
[62] [62] N. Naumova, I. Sokolov, J. Nees et al.. Attosecond electron bunches [J]. Phys. Rev. Lett., 2004, 93(19):195003-1~195003-4
[63] [63] A. V. Isanin, S. S. Bulanov, F. F. Kamenets et al.. Attosecond electromagnetic pulse generation due to the interaction of a relativistic soliton with a breaking-wave plasma wave [J]. Phys. Rev. E, 2005, 71(3):036401-1~036401-6
[64] [64] S. S. Bulanov, T. Zh. Esirkepov, F. F. Kamenets et al.. Single-cycle high-intensity electromagnetic pulse generation in the interaction of a wakefield with regular nonlinear structures [J]. Phys. Rev. E, 2006, 73(3):036408-1~036408-10
[65] [65] K. Lee, Y. H. Cha, M. S. Shin et al.. Relativistic nonlinear Thomson scattering as attosecond x-ray source [J]. Phys. Rev. E, 2003, 67(2):026502-1~026502-7
[66] [66] K. Lee, B. H. Kim, D. Kim. Coherent radiation of relativistic nonlinear Thomson scattering [J]. Phys. Plasmas, 2005, 12(4):043107-1~043107-8
[67] [67] P. F. Lan, P. X. Lu, W. Cao et al.. Attosecond and zeptosecond x-ray pulses via nonlinear Thomson backscattering [J]. Phys. Rev. E, 2005, 72(6):066501-1~066501-7
[68] [68] A. E. Kaplan, P. L. Shkolnikov. Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts [J]. Phys. Rev. Lett., 2002, 88(7):074801-1~074801-4
[69] [69] M. Tabak, J. Hammer, M. E. Glinsky et al.. Ignition and high gain with ultrapowerful lasers [J]. Phys. Plasmas, 1994, 1(5):1626~1634
[70] [70] R. Kodama, P. A. Norreys, K. Mima et al.. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition [J]. Nature, 2001, 412(6849):798~802
[71] [71] R. Kodama, H. Shiraga, K. Shigemori et al.. Fast heating scalable to laser fusion ignition [J]. Nature, 2002, 418(6901):933~934
[72] [72] S. Atzeni. Inertial fusion fast ignitor: igniting pulse parameter window vs the penetrating depth of the heating particles and the density of the precompressed fuel [J]. Phys. Plasmas, 1999, 6(8):3316~3326
[73] [73] M. Roth, T. E. Cowan, M. H. Key et al.. Fast ignition by intense laser-accelerated proton beams [J]. Phys. Rev. Lett., 2001, 86(3):436~439
[74] [74] M. H. Key. Fast track to fusion energy [J]. Nature, 2001, 412(6849):775~776
[75] [75] A. Macchi, A. Antonicci, S. Atzeni et al.. Fundamental issues in fast ignition physics:from relativistic electron generation to proton driven ignition [C]. 19th IAEA Fusion Energy Conference,Oct. 2002:IAEA-CN-94/IF-5
[76] [76] J. H. Nockolls, L. L. Wood. Future of inertial fusion energy [R]. LLNL, UCRL-JC-149860
[77] [77] M. Takab, D. S. Clark, S. P. Hatchett et al.. Review of progress in fast ignition [J]. Phys. Plasmas, 2005, 12(5):057305-1~057305-8
[78] [78] A. Heller. JanUSP opens new world of physics research [J]. Sci. & Technol. Rev., 2000, 5:25~27
[79] [79] R. W. Lee, S. J. Moon, H. K. Chung et al.. Finite temperature dense matter studies on next-generation light sources [J]. J. Opt. Soc. Am. B, 2003, 20(4):770~778
[80] [80] K. Widmann, G. Guethlein, M. E. Foord et al..Interferometric investigation of femtosecond laser-heated expanded states [J]. Phys. Plasmas, 2001, 8(9):3869~3872
[81] [81] P. Audebert, R. Shepherd, K. B. Fournier et al.. Heating of thin foils with a relativistic-intensity short-pulse laser [J]. Phys. Rev. Lett., 2002, 89(26):265001-1~265001-4
[82] [82] P. K. Patel, A. J. Makinnon, M. H. Key et al.. Isochoric heating of solid-density matter with an ultrafast proton beam [J]. Phys. Rev. Lett., 2003, 91(12):125004-1~125004-4
[83] [83] M. E. Foord, D. B. Reisman, P. T. Springer. Determining the equation-of-state isentrope in an isochoric heated plasma [J]. Rev. Sci. Instrum., 2004, 75(8):2586~2589
[84] [84] A. Zhidkov, J. Koga, A. Sasaki et al.. Radiation damping effects on the interaction of ultraintense laser pulses with an overdanse plasma [J]. Phys. Rev. Lett., 2002, 88(18):185002-1~185002-4
[85] [85] S. S. Bulanov, A. M. Fedotov, F. Pegorara. Damping of electromagnetic waves due to electron-positron pair production [J]. Phys. Rev. E, 2005, 71(1):016404-1~016404-11
[86] [86] S. V. Bulanov, T. Zh. Esirkepov, J. Kaga et al.. Interaction of electromagnetic waves with plasma in the radiation-dominated regime [J]. Plasma Phys. Rep., 2004, 30(3):196~213
[87] [87] C. Bula, K. T. McDonald, E. J. Prebye. Observation of nonlinear effects in Compton scattering [J]. Phys. Rev. Lett., 1996, 76(17):3116~3119
[88] [88] B. F. Shen, M. Y. Yu. High-intensity laser-field amplification between two foils [J]. Phys. Rev. Lett., 2002, 89(27):275004-1~275004-4
[89] [89] K. Landecker. Possibility of frenquency multiplication and wave amplification by means of some relativistic effects [J]. Phys. Rev., 1952, 86(6):852~855
[90] [90] F. R. Arutyunian, V. A. Tumanian. The Compton effect on relativistic electrons and the possibility of obtaining high energy beams [J]. Phys. Lett., 1963, 4(3):176~178
[91] [91] Y. L. Li, Z. R. Huang, M. D. Borland et al.. Small-angle Thomson scattering of ultrafast laser pulses for bright,sub-100-fs x-ray radiation [J]. Phys. Rev. ST Accel. Beams, 2002, 5(4):044701-1~044701-9
[92] [92] W. B. Mori. Generation of tunable radiation using an underdense ionization front [J]. Phys. Rev. A, 1991, 44(8):5118~5121
[93] [93] R. L. Savage,Jr. , C. Joshi, Mori. Frequency upconversion of electromagnetic radiation transmission into an ionization front [J]. Phys. Rev. Lett., 1992, 68(7):946~949
[94] [94] S. C. Wilks, J. M. Dawson, W. B. Mori et al.. Photon accelerator [J]. Phys. Rev. Lett., 1989, 62(22):2600~2603
[95] [95] C. W. Siders, S. P. Le Blanc, D. Fisher et al.. Laser wakefield excitation and measurement by femtosecond longitudinal interferometry [J]. Phys. Rev. Lett., 1996, 76(19):3570~3573
[96] [96] Z. M. Sheng, Y. Sentoku, K. Mima et al.. Generation of one-cycle laser pulses by use of high-amplitude plasma waves [J]. Phys. Rev. E, 2000, 62(5):7258~7265
[97] [97] J. Faure, Y. Glinec, J. J. Santos et al.. Observation of laser-pulse shortening in nonlinear plasma waves [J]. Phys. Rev. Lett., 2005, 95(20):205003-1~205003-4
[98] [98] S.V. Bulanov, T. Esirkepov,and T. Tajima, Light intensification towards the Schwinger limit [J]. Phys. Rev. Lett., 2003, 91(8):085001-1~085001-4
Get Citation
Copy Citation Text
[in Chinese]. Ultraintense Solid-State Lasers and Applications to the Frontiers of Sciences[J]. Chinese Journal of Lasers, 2006, 33(7): 865