Journal of Quantum Optics, Volume. 28, Issue 3, 200(2022)

Analysis of Qubit Noise Spectra Based on Deep Learning

ZHOU Xue-ying*, ZHANG Wen-chao, HU Zhi-yi, ZHOU Fei-fei, CHEN Bing, and XU Nan-yang
Author Affiliations
  • [in Chinese]
  • show less
    References(23)

    [1] [1] STEANE A. Quantum computing[J]. Reports on Progress in Physics, 1998, 61(2):117. DOI: 10.1088/0034-4885/61/2/002.

    [2] [2] WEBER J R, KOEHL W F, VARLEY J B, et al. Quantum computing with defects[J]. Proceedings of the National Academy of Sciences, 2010, 107(19):8513-8518. DOI: 10.1073/pnas.1003052107.

    [3] [3] WANG Y, DOLDE F, BIAMONTE J, et al. Quantum simulation of helium hydride cation in a solid-state spin register[J]. ACS Nano, 2015, 9(8):7769-7774. DOI: 10.1021/acsnano.5b01651.

    [4] [4] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Reviews of Modern Physics, 2014, 86(1):153. DOI: 10.1103/RevModPhys.86.153.

    [5] [5] BROWN K L, MUNRO W J, KENDON V M. Using quantum computers for quantum simulation[J]. Entropy, 2010, 12(11):2268-2307. DOI: 10.3390/e12112268.

    [6] [6] THOMAS-PETER N, SMITH B J, DATTA A, et al. Real-world quantum sensors: evaluating resources for precision measurement[J]. Physical Review Letters, 2011, 107(11):113603. DOI: 10.1103/ PhysRevLett.107. 113603.

    [7] [7] BAUCH E, HART C A, SCHLOSS J M, et al. Ultralong dephasing times in solid-state spin ensembles via quantum control[J]. Physical Review X, 2018, 8(3):031025. DOI: 10.1103/PhysRevX.8.031025.

    [8] [8] YALE C G, BUCKLEY B B, CHRISTLE D J, et al. All-optical control of a solid-state spin using coherent dark states[J]. Proceedings of the National Academy of Sciences, 2013, 110(19):7595-7600. DOI: 10.1073/ pnas.1305920110.

    [9] [9] DE LANGE G, WANG Z H, RISTE D, et al. Universal dynamical decoupling of a single solid-state spin from a spin bath[J]. Science, 2010, 330(6000):60-63. DOI: 10.1126/science.1192739.

    [10] [10] HALL L T, HILL C D, COLE J H, et al. Monitoring ion-channel function in real time through quantum decoherence[J]. Proceedings of the National Academy of Sciences, 2010, 107(44):18777-18782. DOI: 10.1073/pnas.1002562107.

    [11] [11] BAUCH E, SINGH S, LEE J, et al. Decoherence of ensembles of nitrogen-vacancy centers in diamond[J]. Physical Review B, 2020, 102(13):134210. DOI: 10.1103/PhysRevB.102.134210.

    [12] [12] HANSON R, GYWAT O, AWSCHALOM D D. Room-temperature manipulation and decoherence of a single spin in diamond[J]. Physical Review B, 2006, 74(16):161203. DOI: 10.1103/PhysRevB.74.161203.

    [13] [13] FARFURNIK D, JARMOLA A, PHAM L M, et al. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond[J]. Physical Review B, 2015, 92(6):060301. DOI: 10.1103/PhysRevB.92.060301.

    [14] [14] WANG Z H, DE LANGE G, RIST D, et al. Comparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamond[J]. Physical Review B, 2012, 85(15):155204. DOI: 10.1103/PhysRevB.85.155204.

    [15] [15] DE LANGE G, WANG Z H, RISTE D, et al. Universal dynamical decoupling of a single solid-state spin from a spin bath[J]. Science, 2010, 330(6000):60-63. DOI: 10.1126/science.1192739.

    [16] [16] CASANOVA J, WANG Z Y, HAASE J F, et al. Robust dynamical decoupling sequences for individual-nuclear-spin addressing[J]. Physical Review A, 2015, 92(4):042304. DOI: 10.1103/PhysRevA.92.042304.

    [17] [17] WANG Z, CHEN J, HOI S C H. Deep learning for image super-resolution: A survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(10):3365-3387. DOI: 10.1109/TPAMI.2020.2982166.

    [20] [20] GOULD M, CHAKRAVARTHI S, CHRISTEN I R, et al. Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information[J]. JOSA B, 2016, 33(3): B35-B42. DOI: 10.1364/JOSAB.33.000B35.

    [21] [21] CHILDRESS L, HANSON R. Diamond NV centers for quantum computing and quantum networks[J]. MRS Bulletin, 2013, 38(2):134-138. DOI: https://doi.org/10.1557/mrs.2013.20.

    [23] [23] KHALIULLIN R Z, ESHET H, KHNE T D, et al. Graphite-diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface[J]. Physical Review B, 2010, 81(10):100103. DOI: 10.1103/PhysRevB.81.100103.

    [24] [24] WISE D F, MORTON J J L, DHOMKAR S. Using deep learning to understand and mitigate the qubit noise environment[J]. PRX Quantum, 2021, 2(1):010316. DOI: 10.1103/PRXQuantum.2.010316.

    [25] [25] LIU X, HERSAM M C. 2D materials for quantum information science[J]. Nature Reviews Materials, 2019, 4(10):669-684. DOI: 10.1038/s41578-019-0136-x.

    [26] [26] CHANG C C, WU M H, LIN J W, et al. NV-BNN: An accurate deep convolutional neural network based on binary STT-MRAM for adaptive AI edge[C]. //2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE, 2019: 1-6.

    Tools

    Get Citation

    Copy Citation Text

    ZHOU Xue-ying, ZHANG Wen-chao, HU Zhi-yi, ZHOU Fei-fei, CHEN Bing, XU Nan-yang. Analysis of Qubit Noise Spectra Based on Deep Learning[J]. Journal of Quantum Optics, 2022, 28(3): 200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 17, 2022

    Accepted: --

    Published Online: Oct. 14, 2022

    The Author Email: ZHOU Xue-ying (zxy05510426@163.com)

    DOI:10.3788/jqo20222803.0301

    Topics