Chinese Journal of Lasers, Volume. 50, Issue 3, 0307112(2023)
Elucidation of Interaction Between OVCAR-3 Cell Membranes and BSA-DOX Nanoparticles Based on FLIM -FRET
[1] Thanuja M Y S H, Anupama C, Ranganath S H. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: so near and yet so far[J]. Advanced Drug Delivery Reviews, 132, 57-80(2018).
[2] Ewaschuk J B, Newell M, Field C J. Docosahexanoic acid improves chemotherapy efficacy by inducing CD95 translocation to lipid rafts in ER- breast cancer cells[J]. Lipids, 47, 1019-1030(2012).
[3] Li Z, Li B, Wang M et al. The role of endosome evasion bypass in the reversal of multidrug resistance by lipid/nanoparticle assemblies[J]. Journal of Materials Chemistry B, 1, 1466-1474(2013).
[4] Yang H, Wang Q, Chen W et al. Hydrophilicity/hydrophobicity reversible and redox-sensitive nanogels for anticancer drug delivery[J]. Molecular Pharmaceutics, 12, 1636-1647(2015).
[5] Flak D, Przysiecka Ł, Nowaczyk G et al. GQDs-MSNs nanocomposite nanoparticles for simultaneous intracellular drug delivery and fluorescent imaging[J]. Journal of Nanoparticle Research, 20, 306(2018).
[6] Zhong J H, Wu J X, Kong Y W et al. Automated analysis methods for autofluorescence lifetime microscopic images of yeast[J]. Laser & Optoelectronics Progress, 59, 0617019(2022).
[7] Liu X B, Lin D Y, Wu Q Q et al. Recent progress in fluorescence lifetime imaging microscopy technology and its applications[J]. Acta Physica Sinica, 67, 178701(2018).
[8] Liu L X, Qi M J, Gao P et al. Application of fluorescence lifetime imaging in cancer diagnosis(invited)[J]. Acta Photonica Sinica, 50, 1017001(2021).
[9] Yang B Y, Xu Y. Fluorescence lifetime retrieval algorithm based on LSTM neural network[J]. Acta Photonica Sinica, 51, 0618002(2022).
[10] Clegg R M. Fluorescence resonance energy transfer and nucleic acids[M]. DNA structures part A: synthesis and physical analysis of DNA, 353-388(1992).
[11] Förster T. Zwischenmolekulare energiewanderung und fluoreszenz[J]. Annalen Der Physik, 437, 55-75(1948).
[12] Clegg RM. Fluorescence resonance energy transfer[J]. Chemical Analysis, 137, 179-252(1996).
[13] Scheibe G. Fluoreszenz organischer verbindungen, von theodor Förster. verlag vandenhoeck u. ruprecht, göttingen, 1951, 1. aufl. 312 S., 81 abb., geh D M 29.50, gebd. D M 32.50[J]. Angewandte Chemie, 66, 164(1954).
[14] Wouters F S, Bastiaens P I, Wirtz K W et al. FRET microscopy demonstrated the molecular association of a non-specific lipid transfer protein (nsL-TP) with fatty acid oxidation enzymes in peroxisomes[J]. The EMBO Journal, 17, 7179-7189(1998).
[15] Kenworthy A K, Edidin M. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer[J]. The Journal of Cell Biology, 142, 69-84(1998).
[16] Dickinson M E, Bearman G, Tille S et al. Multispectral imaging and linear unmixing add a new dimension to laser scanning fluorescence microscopy[J]. BioTechniques, 31, 1272, 1274-1272, 1276, 1278(2001).
[17] Zimmermann T, Rietdorf J, Pepperkok R. Spectral imaging and its applications in live cell microscopy[J]. FEBS Letters, 546, 87-92(2003).
[18] Ng T, Squire A, GHansra et al. Imaging of protein kinase Cα activation in cells[J]. Science, 283, 2085-2089(1999).
[19] Gadella T W J, Jr., Jovin T M, Clegg R M. Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale[J]. Biophysical Chemistry, 48, 221-239(1993).
[20] Mattheyses A L, Hoppe A D, Axelrod D. Polarized fluorescence resonance energy transfer microscopy[J]. Biophysical Journal, 87, 2787-2797(2004).
[21] Clayton A H A, Hanley Q S, Arndt-Jovin D J. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)[J]. Biophysical Journal, 83, 1631-1649(2002).
[22] Rizzo M A, Piston D W. High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy[J]. Biophysical Journal, 88, L14-L16(2005).
[23] Wang S Q, Shen B L, Ren S et al. Implementation and application of FRET-FLIM technology[J]. Journal of Innovative Optical Health Sciences, 12, 1930010(2019).
[24] Wang K N, Qi G B, Chu H Y et al. Probing cell membrane damage using a molecular rotor probe with membrane-to-nucleus translocation[J]. Materials Horizons, 7, 3226-3233(2020).
[25] Rudkouskaya A, Smith J T et al. Quantification of trastuzumab-HER2 engagement in vitro and in vivo[J]. Molecules, 25, 5976(2020).
[26] Wolf M P, Liu K G, Horn T F W et al. FRET in polymeric nanocarriers: IR-780 and IR-780-PDMS[J]. Biomacromolecules, 20, 4065-4074(2019).
[27] Morton S W, Zhao X, Quadir M A et al. FRET-enabled biological characterization of polymeric micelles[J]. Biomaterials, 35, 3489-3496(2014).
[28] Sahay G, Querbes W, Alabi C et al. The efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling[J]. Nature Biotechnology, 31, 653-658(2013).
[29] Zhao Y M, Fay F, Hak S et al. Augmenting drug-carrier compatibility improves tumor nanotherapy efficacy[J]. Nature Communications, 7, 11221(2016).
[30] Bouchaala R, Mercier L, Andreiuk B. Integrity of lipid nanocarriers in bloodstream and tumor quantified by near-infrared ratiometric FRET imaging in living mice[J]. Journal of Controlled Release, 236, 57-67(2016).
[31] Sparks H, Kondo H, SHooper et al. Heterogeneity in tumor chromatin-doxorubicin binding was revealed by in vivo fluorescence lifetime imaging confocal endomicroscopy[J]. Nature Communications, 9, 2662(2018).
[32] Pisano C, Cecere S C, di Napoli M et al. Clinical trials with PEGylated liposomal doxorubicin in the treatment of ovarian cancer[J]. Journal of Drug Delivery, 2013, 898146(2013).
[33] Hortobágyi G N. Anthracyclines in the treatment of cancer. An overview[J]. Drugs, 54, 1-7(1997).
[34] Qaddoumi M G, Ueda H, Yang J et al. Characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers[J]. Pharmaceutical Research, 21, 641-648(2004).
[35] Heger Z, Kominkova M et al. Fluorescence resonance energy transfer between green fluorescent protein and doxorubicin has been enabled by DNA nanotechnology[J]. ELECTROPHORESIS, 35, 3290-3301(2014).
[36] Panja P, Jana R. Lipid-raft-mediated direct cytosolic delivery of polymer-coated soft nanoparticles[J]. The Journal of Physical Chemistry. B, 124, 5323-5333(2020).
[37] Ma Y Q, Pandzic E, Nicovich P R et al. Intermolecular FRET sensors detect the dynamics of T-cell receptor clustering[J]. Nature Communications, 8, 15100(2017).
[38] Müller M, Schmidt O, Angelova M et al. The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation[J]. eLife, 4, e07736(2015).
[39] Rainero E, Howe J D, Caswell P T et al. Ligand-occupied integrin internalization links nutrient signaling to invasive migration[J]. Cell Reports, 10, 398-413(2015).
[40] Jones C B, Ott E M, Keener J M et al. Regulation of membrane protein degradation via starvation-response pathways[J]. Traffic, 13, 468-482(2012).
Get Citation
Copy Citation Text
Huixian Li, Fangrui Lin, Yunjian Xu, Yanping Li, Kexin Wang, Shiqi Wang, Yanhua Zou, Rui Hu, Junle Qu, Liwei Liu. Elucidation of Interaction Between OVCAR-3 Cell Membranes and BSA-DOX Nanoparticles Based on FLIM -FRET[J]. Chinese Journal of Lasers, 2023, 50(3): 0307112
Category: Biomedical Optical Imaging
Received: Nov. 3, 2022
Accepted: Dec. 2, 2022
Published Online: Feb. 6, 2023
The Author Email: Liu Liwei (liulw@szu.edu.cn)