Laser & Infrared, Volume. 55, Issue 5, 798(2025)
Overview of image panoramic segmentation based on deep learning
[1] [1] Kirillov A, He K M, Girshick R, et al. Panoptic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: CVF, 2019: 9404-9413.
[2] [2] Guo Y M, Liu Y, Georgiou T, et al. A review of semantic segmentation using deep neural networks[J]. International Journal of Multimedia Information Retrieval, 2018, 7(2): 87-93.
[3] [3] Hafiz A M, Bhat G M. A survey on instance segmentation: state of the art[J]. International Journal of Multimedia Information Retrieval, 2020, 9(3): 171-189.
[4] [4] Xiong Y W, Liao R J, Zhao H S, et al. UPSNet: a unified panoptic segmentation network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: CVF, 2019: 8818-8826.
[6] [6] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04). https://arxiv.org/abs/1409.1556.
[7] [7] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016.770-778.
[8] [8] Ren J W, Yu C J, Cai Z G, et al. Refine: prediction fusion network for panoptic segmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(3): 2477-2485.
[9] [9] Kirillov A, Girshick R, He K M, et al. Panoptic feature pyramid networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: CVF, 2019: 6399-6408.
[10] [10] He K M, Gkioxari G, Dollr P, et al. Mask R-CNN[C]//Proceedings of the IEEE international conference on computer vision. Venice: CVF, 2017: 2961-2969.
[11] [11] Yang T J, Collins M D, Zhu Y K, et al. Deeperlab: single-shot image parser[EB/OL]. (2019-02-13). https://arxiv.org/abs/1902.05093.
[12] [12] Cheng B W, Collins M D, Zhu Y K, et al. Panoptic-deeplab: a simple, strong, and fast baseline for Bottom-Up panoptic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: CVF, 2020: 12475-12485.
[13] [13] Wang H Y, Zhu Y K, Green B, et al. Axial-deeplab: stand-alone axial-attention for panoptic segmentation[C]//Vedaldi A, Bischof H, Brox T, et al. Computer Vision-ECCV 2020: 16th European Conference. Cham: Springer International Publishing, 2020: 108-126.
[14] [14] Wang H Y, Zhu Y K, Adam H, et al. MaX-deeplab: end-to-end panoptic segmentation with mask transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: CVF, 2021: 5463-5474.
[15] [15] Hu J, Huang L Y, Ren T H, et al. You only segment once: Towards real-time panoptic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouve: CVF, 2023: 17819-17829.
[16] [16] Chang C Y, Chang S E, Hsiao P Y, et al. EPSNet: efficient panoptic segmentation network with cross-layer attention fusion[C]//Ishikawa H, Liu C L, Pajdla T, et al. Computer Vision-ACCV 2020. Cham: Springer, 2021: 689-705.
[17] [17] De Geus D, Meletis P, Dubbelman G. Panoptic segmentation with a joint semantic and instance segmentation network[EB/OL]. (2018-09-06). https://arxiv.org/abs/1809.02110.
[18] [18] Wu Y X, Zhang G W, Xu H, et al. Auto-panoptic: cooperative multi-component architecture search for panoptic segmentation[J]. Advances in Neural Information Processing Systems, 2020, 33: 20508-20519.
[19] [19] Mohan R, Valada A. Efficientps: efficient panoptic segmentation[J]. International Journal of Computer Vision, 2021, 129(5): 1551-1579.
[20] [20] Li Y W, Chen X Z, Zhu Z, et al. Attention-guided unified network for panoptic segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: CVF, 2019: 7019-7028.
[21] [21] Liu H Y, Peng C, Yu C Q, et al. An end-to-end network for panoptic segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 6165-6174.
[22] [22] Hong W X, Guo Q P, Zhang W, et al. LPSNet: a lightweight solution for fast panoptic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: CVF, 2021: 16746-16754.
[23] [23] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 213-229.
[24] [24] Li Z Q, Wang W H, Xie E Z, et al. Panoptic SegFormer: delving deeper into panoptic segmentation with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: CVF, 2022: 1280-1289.
[25] [25] Cheng B W, Misra I, Schwing A G, et al. Masked-attention mask transformer for universal image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: CVF, 2022: 1290-1299.
[26] [26] Gao N Y, He F, Jia J, et al. Panopticdepth: a unified framework for depth-aware panoptic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: CVF, 2022: 1632-1642.
[27] [27] Jain J, Li J C, Chiu M T, et al. Oneformer: one transformer to rule universal image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouve: CVF, 2023: 2989-2998.
[28] [28] Nguyen T, Mehltretter M, Rottensteiner F. Depth-aware panoptic segmentation[EB/OL]. (2024-03-21). https://arxiv.org/html/2405.10947v1.
[29] [29] Devi K J, Sudha S V. A novel panoptic segmentation model for lung tumor prediction using deep learning approaches[J]. Soft Computing, 2024, 28(3): 2637-2648.
[30] [30] Marcuzzi R, Nunes L, Wiesmann L, et al. Mask-based panoptic LiDAR segmentation for autonomous driving[J]. IEEE Robotics and Automation Letters, 2023, 8(2): 1141-1148.
[31] [31] Dou Y L, Yao F Q, Wang X D, et al. PanopticUAV: panoptic segmentation of UAV images for marine environment monitoring[J]. Computer Modeling in Engineering & Sciences, 2024, 138(1): 1001-1014.
[32] [32] Zhang D H, Song Y, Liu D N, et al. Panoptic segmentation with an end-to-end cell R-CNN for pathology image analysis[C]//Frangi A F, Schnabel J A, Davatzikos C, et al. Medical Image Computing and Computer Assisted Intervention-MICCAI 2018. Cham: Springer, 2018: 237-244.
[33] [33] Petrovai A, Nedevschi S. Real-time panoptic segmentation with prototype masks for automated driving[C]//2020 IEEE Intelligent Vehicles Symposium (IV). Las Vegas: IEEE, 2020: 1400-1406.
[34] [34] Halstead M, Zimmer P, McCool C. A cross-domain challenge with panoptic segmentation in agriculture[J]. The International Journal of Robotics Research, 2024, 43(8): 1151-1174.
[35] [35] Rippel O, Schnfelder N, Rahimi K, et al. Panoptic segmentation of animal fibers[C]//2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Ottawa: IEEE, 2022: 1-6.
[36] [36] Son J, Lee S. Hidden enemy visualization using fast panoptic segmentation on battlefields[C]//2021 IEEE International Conference on Big Data and Smart Computing (BigComp). Jeju Island: IEEE, 2021: 291-294.
Get Citation
Copy Citation Text
TENG Shu-hua, YANG Lan-shi, WANG Shi-guo, ZHANG Ye-zhong. Overview of image panoramic segmentation based on deep learning[J]. Laser & Infrared, 2025, 55(5): 798
Category:
Received: Dec. 18, 2024
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: