Journal of Synthetic Crystals, Volume. 51, Issue 6, 986(2022)
Multi-Component Defect State of Photonic Crystals
[1] [1] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062.
[2] [2] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.
[3] [3] JOHN S, AKZBEK N. Nonlinear optical solitary waves in a photonic band gap[J]. Physical Review Letters, 1993, 71(8): 1168-1171.
[4] [4] MILLS D L, TRULLINGER S E. Gap solitons in nonlinear periodic structures[J]. Physical Review B, Condensed Matter, 1987, 36(2): 947-952.
[5] [5] JOHN S, QUANG T. Spontaneous emission near the edge of a photonic band gap[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1994, 50(2): 1764-1769.
[6] [6] JOHN S, QUANG T. Localization of superradiance near a photonic band gap[J]. Physical Review Letters, 1995, 74(17): 3419-3422.
[7] [7] MCCALL S L, PLATZMAN P M, DALICHAOUCH R, et al. Microwave propagation in two-dimensional dielectric lattices[J]. Physical Review Letters, 1991, 67(15): 2017-2020.
[8] [8] YABLONOVITCH E, GMITTER T J, MEADE R D, et al. Donor and acceptor modes in photonic band structure[J]. Physical Review Letters, 1991, 67(24): 3380-3383.
[9] [9] SMITH D R, MCCALL S L, PLATZMAN P M, et al. Photonic band structure and defects in one and two dimensions[J]. Journal of the Optical Society of America B, 1993, 10(2): 314.
[10] [10] AKAHANE Y, ASANO T, SONG B S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 2003, 425(6961): 944-947.
[11] [11] MEKIS A, CHEN J C, et al. High transmission through sharp bends in photonic crystal waveguides[J]. Physical Review Letters, 1996, 77(18): 3787-3790.
[12] [12] HU J, MENYUK C R, SHAW L B, et al. A mid-IR source with increased bandwidth using tapered As2S3 chalcogenide photonic crystal fibers[J]. Optics Communications, 2013, 293: 116-118.
[13] [13] KING B, RUMINSKI A, SNYDER J, et al. Optical-fiber-mounted porous silicon photonic crystals for sensing organic vapor breakthrough in activated carbon[J]. Advanced Materials, 2007, 19(24): 4530-4534.
[14] [14] NOTOMI M, YAMADA K, SHINYA A, et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs[J]. Physical Review Letters, 2001, 87(25): 253902.
[15] [15] CORCORAN B, MONAT C, GRILLET C, et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides[J]. Nature Photonics, 2009, 3(4): 206-210.
[16] [16] ALTUG H, ENGLUND D, VUKOVI J. Ultrafast photonic crystal nanocavity laser[J]. Nature Physics, 2006, 2(7): 484-488.
[17] [17] PARK H G, KIM S H, KWON S H, et al. Electrically driven single-cell photonic crystal laser[J]. Science, 2004, 305(5689): 1444-1447.
[18] [18] ELLIS B, MAYER M A, SHAMBAT G, et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser[J]. Nature Photonics, 2011, 5(5): 297-300.
[19] [19] MEADE R D, BROMMER K D, RAPPE A M, et al. Existence of a photonic band gap in two dimensions[J]. Applied Physics Letters, 1992, 61(4): 495-497.
[20] [20] FENG X P, ARAKAWA Y. Defect modes in two-dimensional triangular photonic crystals[J]. Japanese Journal of Applied Physics, 1997, 36(Part 2, No. 2A): L120-L123.
[21] [21] ABBASIAN SHOJAEI I, SOLTANI VALA A, SHOJAEI S, et al. Localized defect modes in finite magnetic two-dimensional photonic crystals[J]. The European Physical Journal B, 2011, 81(1): 63-68.
[22] [22] VILLENEUVE P R, FAN S, JOANNOPOULOS J D. Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency[J]. Physical Review B, Condensed Matter, 1996, 54(11): 7837-7842.
[23] [23] SIGALAS M, SOUKOULIS C M, ECONOMOU E N, et al. Photonic band gaps and defects in two dimensions: studies of the transmission coefficient[J]. Physical Review B, Condensed Matter, 1993, 48(19): 14121-14126.
[24] [24] SIGALAS M M, SOUKOULIS C M, CHAN C T, et al. Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials[J]. Physical Review B, Condensed Matter, 1994, 49(16): 11080-11087.
[25] [25] WANG L Q, ZHENG H, LU X, et al. A Petrov-Galerkin finite element interface method for interface problems with Bloch-periodic boundary conditions and its application in phononic crystals[J]. Journal of Computational Physics, 2019, 393: 117-138.
[26] [26] WANG L Q, ZHENG H, ZHAO M L, et al. Petrov-Galerkin method for the band structure computation of anisotropic and piezoelectric phononic crystals[J]. Applied Mathematical Modelling, 2021, 89: 1090-1105.
[27] [27] WANG L Q, ZHAO M L, ZHANG Y F, et al. A finite element method for the band structure computation of photonic crystals with complex scatterer geometry[J]. Computer Physics Communications, 2021, 263: 107869.
[29] [29] ALAGAPPAN G, SUN X W, SHUM P, et al. Symmetry properties of two-dimensional anisotropic photonic crystals[J]. Journal of the Optical Society of America A, 2006, 23(8): 2002-2013.
Get Citation
Copy Citation Text
WANG Liqun, YAN Jiaxin, LU Xin, SHI Liwei, ZHANG Xiaoli. Multi-Component Defect State of Photonic Crystals[J]. Journal of Synthetic Crystals, 2022, 51(6): 986
Category:
Received: Feb. 18, 2022
Accepted: --
Published Online: Aug. 13, 2022
The Author Email: Liqun WANG (wliqunhmily@gmail.com)
CSTR:32186.14.