Infrared Technology, Volume. 44, Issue 4, 410(2022)
Low-light Image Enhancement Based on Multi-scale Wavelet U-Net
[5] [5] Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451-62.
[6] [6] Jobson D J, Rahman Z, Woodell G A. A multiscale Retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976.
[7] [7] GAO Y, HU H M, LI B, et al. Naturalness preserved nonuniform illumination estimation for image enhancement based on Retinex[J]. IEEE Transactions on Multimedia, 2018, 20(2): 335-344.
[8] [8] FU X Y, ZENG D L, HUANG Y, et al. A fusion-based enhancing method for weakly illuminated images[J]. Signal Processing, 2016, 129: 82-96.
[9] [9] GUO X J, LI Y, LING H B. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993.
[10] [10] Kin G L, Adedotun A, Soumik S. LLNet: A deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662.
[11] [11] SHEN L, YUE Z, FENG F, et al. MSR-net: low-light image enhancement using deep convolutional network[EB/OL].[2017-11-07]. https:// arxiv.org/ abs/1711.02488.
[12] [12] WEI C, WANG W, YANG W, et al. Deep Retinex decomposition for low-light enhancement[C]//Proceedings of 2018 British Machine Vision Conference on Machine Vision, Image Processing, and Pattern Recognition, 2018: 1-12(DOI: 10.48550/ARXIV.1808.04560).
[13] [13] HU J, SHEN L, Albanie S, SUN G, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[14] [14] SHI W, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C] //Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 1874-1883.
[15] [15] Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), 2017: 1132-1140.
[16] [16] Ledig C, Theis L, Huszar F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 105-114.
[17] [17] MA K, ZENG K, WANG Z. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3345-3356.
[18] [18] LEE C W, LEE C, KIM C S. Contrast enhancement based on layered difference representation of 2D histograms[J]. IEEE Transactions on Image Processing, 2013, 22(12): 5372-5384.
[19] [19] WANG S, ZHENG J, HU H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538-3548.
[20] [20] Mittal A, Soundararajan R, Bovik A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212.
[21] [21] FU X, ZENG D, HUANG Y, et al. A fusion-based enhancing method for weakly illuminated images[J]. Signal Processing, 2016, 129: 82-96.
[22] [22] YING Z, LI G, GAO W. A bio-inspired multi-exposure fusion framework for low-light image enhancement[EB/OL].[2017-11-02]. https:// arxiv.org/ abs/1711.00591.
[23] [23] ZHANG Y, ZHANG J, GUO X. Kindling the darkness: a practical low-light image enhancer[C]//Proceedings of The 27th ACM International Conference on Multimedia, 2019: 1632-1640.
Get Citation
Copy Citation Text
MA Lu. Low-light Image Enhancement Based on Multi-scale Wavelet U-Net[J]. Infrared Technology, 2022, 44(4): 410