Chinese Journal of Lasers, Volume. 50, Issue 7, 0701003(2023)
Frequency‐Stabilized Deep Ultraviolet Laser System Based on Optical Phase‐Locked Loop
[1] Wieman C E, Hollberg L. Using diode lasers for atomic physics[J]. Review of Scientific Instruments, 62, 1-20(1991).
[2] MacAdarn K B, Steinbach A, Wiernan C. A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb[J]. American Journal of Physics, 60, 1098-1111(1992).
[3] Baker C J, Bertsche W, Capra A et al. Laser cooling of antihydrogen atoms[J]. Nature, 592, 35-42(2021).
[4] Hachisu H, Miyagishi K, Porsev S G et al. Trapping of neutral mercury atoms and prospects for optical lattice clocks[J]. Physical Review Letters, 100, 053001(2008).
[5] Petersen M, Chicireanu R, Dawkins S T et al. Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled Fermionic isotopes of neutral mercury[J]. Physical Review Letters, 101, 183004(2008).
[6] Brickman K A, Chang M S, Acton M et al. Magneto-optical trapping of cadmium[J]. Physical Review A, 76, 043411(2007).
[7] Kulosa A P, Fim D, Zipfel K H et al. Towards a Mg lattice clock: observation of the 1S0-3P0 transition and determination of the magic wavelength[J]. Physical Review Letters, 115, 240801(2015).
[8] Ohtsubo N, Li Y, Matsubara K et al. Frequency measurement of the clock transition of an indium ion sympathetically-cooled in a linear trap[J]. Optics Express, 25, 11725-11735(2017).
[9] Jordan E, Gilmore K A, Shankar A et al. Near ground-state cooling of two-dimensional trapped-ion crystals with more than 100 ions[J]. Physical Review Letters, 122, 053603(2019).
[10] Dzuba V A, Allehabi S O, Flambaum V V et al. Time keeping and searching for new physics using metastable states of Cu, Ag, and Au[J]. Physical Review A, 103, 022822(2021).
[11] Zhang J, Yuan W H, Deng K et al. A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments[J]. Review of Scientific Instruments, 84, 123109(2013).
[12] Yamanaka K, Ohmae N, Ushijima I et al. Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit[J]. Physical Review Letters, 114, 230801(2015).
[13] McFerran J J, Yi L, Mejri S et al. Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty = 5.7×10-15[J]. Physical Review Letters, 108, 183004(2012).
[14] Yamaguchi A, Safronova M S, Gibble K et al. Narrow-line cooling and determination of the magic wavelength of Cd[J]. Physical Review Letters, 123, 113201(2019).
[15] Angstmann E J, Dzuba V A, Flambaum V V. Relativistic effects in two valence-electron atoms and ions and the search for variation of the fine-structure constant[J]. Physical Review A, 70, 014102(2004).
[16] Flambaum V V, Dzuba V A. Search for variation of the fundamental constants in atomic, molecular, and nuclear spectra[J]. Canadian Journal of Physics, 87, 25-33(2009).
[17] Lavigne Q, Groh T, Stellmer S. Magneto-optical trapping of mercury at high phase-space density[J]. Physical Review A, 105, 033106(2022).
[18] Liu K K, Zhao R C, Gou W et al. A single folded beam magneto-optical trap system for neutral mercury atoms[J]. Chinese Physics Letters, 33, 42-45(2016).
[19] Witkowski M, Nagórny B, Munoz-Rodriguez R et al. Dual Hg-Rb magneto-optical trap[J]. Optics Express, 25, 3165-3179(2017).
[20] Meyer E R, Bohn J L. Electron electric-dipole-moment searches based on alkali-metal- or alkaline-earth-metal-bearing molecules[J]. Physical Review A, 80, 042508(2009).
[21] Hu J M, Zhang L, Liu H L et al. High power room temperature 1014.8 nm Yb fiber amplifier and frequency quadrupling to 253.7 nm for laser cooling of mercury atoms[J]. Optics Express, 21, 30958-30963(2013).
[22] Valentin C. Horloge à réseau optique à atomes de mercure exploitant un 2D-MOT: durée de vie de l’état 3P0 et mesures de fréquence[D], 50-60(2019).
[23] Maxime F. Mercury Optical lattice clock: from high-resolution spectroscopy to frequency ratio measurements[D], 50-51(2017).
[24] Zhang Y, Liu Q X, Sun J F et al. Enhanced cold mercury atom production with two-dimensional magneto-optical trap[J]. Chinese Physics B, 31, 073701(2022).
[25] Li K, Zhang D F, Gao T Y et al. Enhanced trapping of cold 6Li using multiple-sideband cooling in a two-dimensional magneto-optical trap[J]. Physical Review A, 92, 013419(2015).
[26] Park S J, Noh J, Mun J. Cold atomic beam from a two-dimensional magneto-optical trap with two-color pushing laser beams[J]. Optics Communications, 285, 3950-3954(2012).
[27] Fang J C, Qi L, Zhang Y C et al. Compact high-flux cold cesium beam source based on a modified two-dimensional magneto-optical trap[J]. Journal of the Optical Society of America B, 32, B61-B66(2015).
[28] Ivanov E N, Esnault F X, Donley E A. Offset phase locking of noisy diode lasers aided by frequency division[J]. Review of Scientific Instruments, 82, 083110(2011).
[29] Kawalec T, Bartoszek-Bober D. Construction and performance of an optical phase and frequency lock of diode lasers[J]. Optical Engineering, 52, 126105(2013).
[30] Wang K N, Cheng B, Zhou Y et al. Phase locking technology for Raman laser system based on 1560 nm external cavity lasers[J]. Acta Physica Sinica, 70, 170303(2021).
[31] Ma Z J, Wang D, Wu J Z et al. Design of optical phase locked loop for atoms-lights coupling systems[J]. Journal of Quantum Optics, 22, 193-198(2016).
[32] Zhang Z, Sun J F, Lu B et al. Costas optical phase lock loop system design in inter-orbit coherent laser communication[J]. Chinese Journal of Lasers, 42, 0805006(2015).
[33] Best R E[M]. Phase-locked loops: design, simulation, and applications. Li Y M, Wang H Y, Xiao J, et al., Transl, 23-33(2007).
[34] Mielke J, Pick J, Coenders J A et al. 139 GHz UV phase-locked Raman laser system for thermometry and sideband cooling of 9Be+ ions in a Penning trap[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 54, 195402(2021).
[35] Appel J, MacRae A, Lvovsky A I. A versatile digital GHz phase lock for external cavity diode lasers[J]. Measurement Science and Technology, 20, 055302(2009).
[36] Marino A M, Stroud C R. Phase-locked laser system for use in atomic coherence experiments[J]. Review of Scientific Instruments, 79, 013104(2008).
[37] Lévèque T, Antoni-Micollier L, Faure B et al. A laser setup for rubidium cooling dedicated to space applications[J]. Applied Physics B, 116, 997-1004(2014).
[38] Schünemann U, Engler H, Grimm R et al. Simple scheme for tunable frequency offset locking of two lasers[J]. Review of Scientific Instruments, 70, 242-243(1999).
[39] Lipka M, Parniak M, Wasilewski W. Optical frequency locked loop for long-term stabilization of broad-line DFB laser frequency difference[J]. Applied Physics B, 123, 238(2017).
[40] Guo C, Favier M, Galland N et al. Accurate laser frequency locking to optical frequency combs under low-signal-to-noise-ratio conditions[J]. Review of Scientific Instruments, 91, 033202(2020).
[41] Zhang Y, Liu Q X, Fu X H et al. A stable deep-ultraviolet laser for laser cooling of mercury atoms[J]. Optics & Laser Technology, 139, 106956(2021).
[42] Cui M B, Huang J G, Yang X L. Review on methods for laser linewidth measurement[J]. Laser&Optoelectronics Progress, 58, 0900005(2021).
[43] Xie D H, Deng D P, Guo L et al. Line-width measurement method of narrow line width lasers[J]. Laser&Optoelectronics Progress, 50, 010006(2013).
[44] [M]. 频标: 基础与应用. 魏荣, 邓见辽, 徐震, 译, 74-76(2021).
Riehle F, Riehle Fritz[M]. Frequency standards: basics and applications. Wei R, Deng J L, Xu Z, Transl, 74-76(2021).
[45] Xu T R. Research on feedforward control for optical-electro tracking system on moving platform[D], 22-23(2020).
[46] Monroe C, Meekhof D M, King B E et al. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy[J]. Physical Review Letters, 75, 4011-4014(1995).
[47] Jiang B N. Low noise phase-locked laser system for atom interferometry[J]. Applied Physics B, 128, 71(2022).
Get Citation
Copy Citation Text
Qixin Liu, Ye Zhang, Jianfang Sun, Zhen Xu. Frequency‐Stabilized Deep Ultraviolet Laser System Based on Optical Phase‐Locked Loop[J]. Chinese Journal of Lasers, 2023, 50(7): 0701003
Category: laser devices and laser physics
Received: Jun. 6, 2022
Accepted: Aug. 15, 2022
Published Online: Mar. 28, 2023
The Author Email: Xu Zhen (xuzhen@siom.ac.cn)