Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1628003(2025)

Small Target Detection Algorithm Based on Improved YOLOv8n for Remote Sensing

Qingjiang Cheng* and Lu Li
Author Affiliations
  • School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi , China
  • show less
    Figures & Tables(16)
    Structure diagram of YOLOv8n network
    Structure diagram of REI-YOLOv8n network
    Structure diagram of RFE module
    Different types of feature fusion networks. (a) FPN; (b) PANet; (c) BiFPN; (d) EiFPN
    Structure diagram of Fusion module
    Structure diagrams of the ELSE attention mechanism
    Schematic diagram of Inner-IoU
    Partial images in two datasets. (a) NWPU VHR-10; (b) Visdrone2019
    Precision-recall curves on different datasets. (a) NWPU VHR-10; (b) Visdrone2019
    Visualization results on NWPU VHR-10 and Visdrone2019. (a)(c) YOLOv8n; (b)(d) REI-YOLOv8n
    • Table 1. Experimental software and hardware configuration information

      View table

      Table 1. Experimental software and hardware configuration information

      ConfigurationParameter
      GPUNVIDIA GeForce RTX 4090
      Operating systemLinux Ubuntu 20.04.1 LTS
      Deep learning frameworkPyTorch 2.1.1+CUDA 12.1
      Programming languagePython 3.8.13
    • Table 2. Comparison of different target detection algorithms on NWPU VHR-10

      View table

      Table 2. Comparison of different target detection algorithms on NWPU VHR-10

      ModelmAP@0.5mAP@0.5∶0.9
      Faster R-CNN0.8060.547
      SSD0.7890.538
      YOLOv5n0.8380.537
      YOLOv8n0.8720.545
      REI-YOLOv8n0.9040.570
    • Table 3. Comparison of results of YOLOv8n and REI-YOLOv8n on NWPU VHR-10

      View table

      Table 3. Comparison of results of YOLOv8n and REI-YOLOv8n on NWPU VHR-10

      ClassYOLOv8nREI-YOLOv8n
      PprecisionRmAP@0.5mAP@0.5∶0.9PprecisionRmAP@0.5mAP@0.5∶0.9
      Airplane0.9740.9850.9940.6660.9361.0000.9950.670
      Ship0.8700.8610.8910.5360.7680.7780.8780.522
      Storage tank0.9850.9650.9910.6070.9850.9750.9920.600
      Baseball diamond0.9730.9590.9900.7030.9330.9870.9900.717
      Tennis court0.9220.6780.7920.4860.8960.7570.8720.520
      Basketball court0.7570.7500.7830.4920.7600.7930.8800.594
      Ground track field0.9731.0000.9950.8260.9490.9640.9870.840
      Harbor0.8510.8160.8710.5020.7970.8290.9020.515
      Bridge0.7450.7080.7960.3250.9520.8310.8490.343
      Vehicle0.9500.3530.6170.3010.8820.4380.6930.382
      Average0.9000.8080.8720.5450.8860.8350.9040.570
    • Table 4. Comparison of results of YOLOv8n and REI-YOLOv8n on Visdrone2019

      View table

      Table 4. Comparison of results of YOLOv8n and REI-YOLOv8n on Visdrone2019

      ClassYOLOv8nREI-YOLOv8n
      PprecisionRmAP@0.5mAP@0.5∶0.9PprecisionRmAP@0.5mAP@0.5∶0.9
      Pedestrian0.4450.3610.3650.1580.4230.4000.3850.174
      People0.5060.2450.2830.1030.5150.2720.3050.116
      Bicycle0.2590.1220.0940.0380.2720.1320.1050.044
      Car0.6730.7590.7720.5340.6510.7820.7880.555
      Van0.4810.4010.3970.2720.4760.4190.4090.291
      Truck0.4740.3080.3060.2010.4780.3310.3370.232
      Tricycle0.3590.2780.2340.1280.4000.2520.2440.138
      Awning-tricycle0.2800.1560.1230.0730.2990.1470.1460.094
      Bus0.6230.4620.5180.3630.6560.5170.5640.409
      Motor0.5030.3820.3900.1620.5220.3910.4070.177
      Average0.4600.3470.3480.2030.4690.3640.3690.223
    • Table 5. Comparison of ablation experiments of different modules on NWPU VHR-10

      View table

      Table 5. Comparison of ablation experiments of different modules on NWPU VHR-10

      ModuleParameter /106LayerFPS /(frame/s)mAP@0.5mAP@0.5∶0.9
      Baseline30.0716878.90.8720.545
      Baseline+RFE30.0917670.20.8840.556
      Baseline+RFE+EiFPN41.3726462.40.8940.563
      Baseline+RFE+EiFPN+Inner-PIoU41.3726462.40.9040.570
    • Table 6. Comparison of ablation experiments of different modules on Visdrone2019

      View table

      Table 6. Comparison of ablation experiments of different modules on Visdrone2019

      ModuleParameter /106LayerFPS /(frame/s)mAP@0.5mAP@0.5∶0.9

      Baseline

      Baseline+RFE

      Baseline+RFE+EiFPN

      Baseline+RFE+EiFPN+Inner-PIoU

      30.0716883.00.3300.191
      30.0917676.70.3440.191
      41.3726465.10.3530.206
      41.3726465.10.3690.223
    Tools

    Get Citation

    Copy Citation Text

    Qingjiang Cheng, Lu Li. Small Target Detection Algorithm Based on Improved YOLOv8n for Remote Sensing[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1628003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Nov. 19, 2024

    Accepted: Mar. 18, 2025

    Published Online: Aug. 6, 2025

    The Author Email: Qingjiang Cheng (2279627825@qq.com)

    DOI:10.3788/LOP242287

    CSTR:32186.14.LOP242287

    Topics