Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1764(2025)

Li-Rich Mn-Based Layered Oxide Cathodes for Solid-State Rechargeable Batteries

KONG Weijin1, SHEN Liang1, ZHAO Chenzi1, LE Yicheng2, GU Yifan3, HU Jiangkui4,5, and ZHANG Qiang1,6、*
Author Affiliations
  • 1Department of Chemical Engineering, Beijing Key Laboratory of Complex Solid State Batteries, Tsinghua University, Beijing 100084, China
  • 2Tanwei College, Tsinghua University, Beijing 100084, China
  • 3Zhili College, Tsinghua University, Beijing 100084, China
  • 4Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
  • 5Innovation Center for Smart Solid State Batteries, Yibin 644002, China
  • 6Institute for Carbon Neutrality, Tsinghua University, Beijing 100084, China
  • show less
    References(111)

    [1] [1] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem Rev, 2017, 117(15): 10403–10473.

    [2] [2] XU R, SUN Y Z, WANG Y F, et al. Two-dimensional vermiculite separator for lithium sulfur batteries[J]. Chin Chem Lett, 2017, 28(12): 2235–2238.

    [3] [3] ZHAO M, LI X Y, CHEN X, et al. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium–sulfur batteries[J]. eScience, 2021, 1(1): 44–52.

    [4] [4] HOU L P, ZHANG X Q, YAO N, et al. An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries[J]. Chem, 2022, 8(4): 1083–1098.

    [5] [5] YANG S J, HU J K, JIANG F N, et al. Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells[J]. eTransportation, 2023, 18: 100279.

    [6] [6] YANG Y, YAO N, YAO Y X, et al. Fire-resistant carboxylate-based electrolyte for safe and wide-temperature lithium-ion batteries[J]. Adv Energy Mater, 2024: 2403183. https://doi.org/10.1002/aenm.202403183.

    [7] [7] SINGER G, HSIEH C T, JIN T W, et al. A quasi-solid polymer electrolyte-based structural battery with high mechanical and electrochemical performance[J]. EcoMat, 2023, 5(12): e12418.

    [8] [8] WANG Z X, LU Y, ZHAO C Z, et al. Suppressing Li voids in all-solid-state lithium metal batteries through Li diffusion regulation[J]. Joule, 2024, 8(10): 2794–2810.

    [9] [9] LIU S J, ZHOU L, HAN J, et al. Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte[J]. Adv Energy Mater, 2022, 12(25): 2270105.

    [11] [11] LOU S F, YU Z J, LIU Q S, et al. Multi-scale imaging of solid-state battery interfaces: From atomic scale to macroscopic scale[J]. Chem, 2020, 6(9): 2199–2218.

    [12] [12] GAO Z H, SUN H B, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Adv Mater, 2018, 30(17): 1705702.

    [13] [13] CHEN R S, LI Q H, YU X Q, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chem Rev, 2020, 120(14): 6820–6877.

    [14] [14] LU Y, ZHAO C Z, HU J K, et al. The void formation behaviors in working solid-state Li metal batteries[J]. Sci Adv, 2022, 8(45): eadd0510.

    [15] [15] ZHAO S, LU J J, SHENG B F, et al. High-performance room temperature solid-state lithium battery enabled by PP-PVDF multilayer composite electrolyte[J]. Chin Chem Lett, 2024, 110008. https://doi.org/ 10.1016/j.cclet.2024.110008.

    [16] [16] LIU Y C, LU Y, ZHANG Z L, et al. High-areal-capacity and long-life sulfide-based all-solid-state lithium battery achieved by regulating surface-to-bulk oxygen activity[J]. J Energy Chem, 2025, 101: 795–807.

    [17] [17] KONG W J, ZHAO C Z, SUN S, et al. From liquid to solid-state batteries: Li-rich Mn-based layered oxides as emerging cathodes with high energy density[J]. Adv Mater, 2024, 36(14): 2310738.

    [19] [19] XU L F, CHEN S, SU Y F, et al. Building better batteries: Solid-state batteries with Li-rich oxide cathodes[J]. Energy Mater Adv, 2023, 4: 0045.

    [20] [20] ZHAO S Q, YAN K, ZHANG J Q, et al. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries[J]. Angew Chem Int Ed, 2021, 60(5): 2208–2220.

    [21] [21] HUANG J P, OUYANG B, ZHANG Y Q, et al. Inhibiting collective cation migration in Li-rich cathode materials as a strategy to mitigate voltage hysteresis[J]. Nat Mater, 2023, 22(3): 353–361.

    [22] [22] XIN S, ZHANG X, WANG L, et al. Roadmap for rechargeable batteries: Present and beyond[J]. Sci China Chem, 2024, 67(1): 13–42.

    [23] [23] ZHANG Y H, ZHANG S, HU N F, et al. Oxygen vacancy chemistry in oxide cathodes[J]. Chem Soc Rev, 2024, 53(7): 3302–3326.

    [24] [24] LIU T C, LIU J J, LI L X, et al. Origin of structural degradation in Li-rich layered oxide cathode[J]. Nature, 2022, 606(7913): 305–312.

    [25] [25] YANG Y L, GAO C, LUO T, et al. Unlocking the potential of Li-rich Mn-based oxides for high-rate rechargeable lithium-ion batteries[J]. Adv Mater, 2023, 35(52): 2307138.

    [26] [26] LI B, ZHANG K, YANG Y L, et al. Perspectives on the practicability of Li-rich NMC layered oxide cathodes[J]. Adv Mater, 2024, 36(30): 2400259.

    [27] [27] ZHANG Y H, ZHANG D, WU L R, et al. Stabilization of lattice oxygen in Li-rich Mn-based oxidesviaswing-like non-isothermal sintering[J]. Adv Energy Mater, 2022, 12(43): 2202341.

    [28] [28] WANG H C, SONG J, ZHANG K, et al. A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage lithium metal battery[J]. Energy Environ Sci, 2022, 15(12): 5149–5158.

    [29] [29] DU H Z, ZHANG X, YU H J. Design of high-energy-density lithium batteries: Liquid to all solid state[J]. eTransportation, 2025, 23: 100382.

    [30] [30] WANG H C, YANG Y L, GAO C, et al. An entanglement association polymer electrolyte for Li-metal batteries[J]. Nat Commun, 2024, 15(1): 2500.

    [32] [32] LIU B W, HU N F, LI C, et al. Direct observation of Li-ion transport heterogeneity induced by nanoscale phase separation in Li-rich cathodes of solid-state batteries[J]. Angew Chem Int Ed, 2022, 61(40): e202209626.

    [33] [33] YU R Z, WANG C H, DUAN H, et al. Manipulating charge-transfer kinetics of lithium-rich layered oxide cathodes in halide all-solid-state batteries[J]. Adv Mater, 2023, 35(5): 2207234.

    [34] [34] LI H. Solid state battery, what’s next?[J]. Next Energy, 2023, 1(1): 100007.

    [35] [35] JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nat Energy, 2023, 8: 230–240.

    [36] [36] JIANG F N, YANG S J, CHENG X B, et al. An interface-contact regulation renders thermally safe lithium metal batteries[J]. eTransportation, 2023, 15: 100211.

    [37] [37] WU L Q, WANG Y T, GUO X W, et al. Interface science in polymer-based composite solid electrolytes in lithium metal batteries[J]. SusMat, 2022, 2(3): 264–292.

    [38] [38] ZHANG Y H, WU L R, MA J, et al. Nanotechnology in solid state batteries, what’s next?[J]. Next Nanotechnol, 2023, 2: 100011.

    [40] [40] DING X K, LUO D D, CUI J X, et al. An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries[J]. Angew Chem Int Ed, 2020, 59(20): 7778–7782.

    [41] [41] LI Y X, ZUBA M J, BAI S, et al. Regeneration of degraded Li-rich layered oxide materials through heat treatment-induced transition metal reordering[J]. Energy Storage Mater, 2021, 35: 99–107.

    [43] [43] ZENG L C, LIANG H Y, QIU B, et al. Voltage decay of Li-rich layered oxides: Mechanism, modification strategies, and perspectives[J]. Adv Funct Mater, 2023, 33(25): 2213260.

    [44] [44] ZHAO S Q, YAN K, ZHANG J Q, et al. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries[J]. Angew Chem Int Ed, 2021, 60(5): 2208–2220.

    [45] [45] KOU P Z, ZHANG Z G, WANG Z Y, et al. Opportunities and challenges of layered lithium-rich manganese-based cathode materials for high energy density lithium-ion batteries[J]. Energy Fuels, 2023, 37(23): 18243–18265.

    [46] [46] ROZIER P, TARASCON J M. Review: Li-rich layered oxide cathodes for next-generation Li-ion batteries: Chances and challenges[J]. J Electrochem Soc, 2015, 162(14): A2490–A2499.

    [47] [47] ZHANG M K, QIU L, SUN Y, et al. Microstructure-controlled Li-rich Mn-based cathodes by a gas-solid interface reaction for tackling the continuous activation of Li2MnO3[J]. ACS Appl Mater Interfaces, 2021, 13(34): 40995–41003.

    [48] [48] ZHANG K, LI B, ZUO Y X, et al. Voltage decay in layered Li-rich Mn-based cathode materials[J]. Electrochem Energy Rev, 2019, 2(4): 606–623.

    [49] [49] LI M, BI X X, AMINE K, et al. Oxygen-based anion redox for lithium batteries[J]. Acc Chem Res, 2020, 53(8): 1436–1444.

    [50] [50] ZHANG J C, CHENG F Y, CHOU S L, et al. Tuning oxygen redox chemistry in Li-rich Mn-based layered oxide cathodes by modulating cation arrangement[J]. Adv Mater, 2019, 31(42): 1901808.

    [51] [51] ZHUO Z Q, DAI K H, WU J P, et al. Distinct oxygen redox activities in Li2MO3 (M = Mn, Ru, Ir)[J]. ACS Energy Lett, 2021, 6(10): 3417–3424.

    [52] [52] ZHANG J C, ZHOU D, YANG W Y, et al. Probing the nature of Li+/Ni2+ disorder on the structure and electrochemical performance in Ni-based layered oxide cathodes[J]. J Electrochem Soc, 2019, 166(16): A4097–A4105.

    [54] [54] YIN C, WAN L Y, QIU B, et al. Boosting energy efficiency of Li-rich layered oxide cathodes by tuning oxygen redox kinetics and reversibility[J]. Energy Storage Mater, 2021, 35: 388–399.

    [56] [56] CAO X, LI H F, QIAO Y, et al. Structure design enables stable anionic and cationic redox chemistry in a T2-type Li-excess layered oxide cathode[J]. Sci Bull, 2022, 67(4): 381–388.

    [58] [58] SONG W X, PREZ-OSORIO M A, MARIE J J, et al. Direct imaging of oxygen shifts associated with the oxygen redox of Li-rich layered oxides[J]. Joule, 2022, 6(5): 1049–1065.

    [59] [59] HEISKANEN S K, KIM J, LUCHT B L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries[J]. Joule, 2019, 3(10): 2322–2333.

    [60] [60] WAGNER-HENKE J, KUAI D C, GERASIMOV M, et al. Knowledge-driven design of solid-electrolyte interphases on lithium metalviamultiscale modelling[J]. Nat Commun, 2023, 14(1): 6823.

    [61] [61] LIU Q, YU J H, GUO W Q, et al. Boosting the Li|LAGP interfacial compatibility with trace nonflammable all-fluorinated electrolyte: The role of solid electrolyte interphase[J]. EcoMat, 2023, 5(4): e12322.

    [62] [62] ZUO W H, LUO M Z, LIU X S, et al. Li-rich cathodes for rechargeable Li-based batteries: Reaction mechanisms and advanced characterization techniques[J]. Energy Environ Sci, 2020, 13(12): 4450–4497.

    [63] [63] HE W, GUO W B, WU H L, et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries[J]. Adv Mater, 2021, 33(50): 2005937.

    [64] [64] SEO D H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nat Chem, 2016, 8(7): 692–697.

    [65] [65] CHEN J, DENG W T, GAO X, et al. Demystifying the lattice oxygen redox in layered oxide cathode materials of lithium-ion batteries[J]. ACS Nano, 2021, 15(4): 6061–6104.

    [66] [66] HUANG W Y, LIN C, QIU J M, et al. Delocalized Li@Mn6 superstructure units enable layer stability of high-performance Mn-rich cathode materials[J]. Chem, 2022, 8(8): 2163–2178.

    [67] [67] HWANG J, MYEONG S, LEE E, et al. Lattice-oxygen-stabilized Li- and Mn-rich cathodes with sub-micrometer particles by modifying the excess-Li distribution[J]. Adv Mater, 2021, 33(18): 2100352.

    [68] [68] LI X, LI X H, MONLUC L, et al. Stacking-fault enhanced oxygen redox in Li2MnO3[J]. Adv Energy Mater, 2022, 12(18): 2200427.

    [69] [69] ZHANG H L, LIU H, PIPER L F J, et al. Oxygen loss in layered oxide cathodes for Li-ion batteries: Mechanisms, effects, and mitigation[J]. Chem Rev, 2022, 122(6): 5641–5681.

    [70] [70] LI B, XIA D G. Anionic redox in rechargeable lithium batteries[J]. Adv Mater, 2017, 29(48): 1701054.

    [71] [71] LEE D, CUI Z H, GOODENOUGH J B, et al. Interphase stabilization of LiNi0.5Mn1.5O4 cathode for 5 V-class all-solid-state batteries[J]. Small, 2024, 20(2): 2306053.

    [72] [72] OH G, HIRAYAMA M, KWON O, et al. Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte[J]. Chem Mater, 2016, 28(8): 2634–2640.

    [73] [73] HU N F, ZHANG Y H, YANG Y, et al. Unraveling the spatial asynchronous activation mechanism of oxygen redox-involved cathode for high-voltage solid-state batteries[J]. Adv Energy Mater, 2024, 14(13): 2303797.

    [74] [74] YANG S J, HU J K, JIANG F N, et al. Safer solid-state lithium metal batteries: Mechanisms and strategies[J]. InfoMat, 2024, 6(2): e12512.

    [75] [75] LU Y, ZHAO C Z, YUAN H, et al. Dry electrode technology, the rising star in solid-state battery industrialization[J]. Matter, 2022, 5(3): 876–898.

    [76] [76] HUANG W Z, XU P, HUANG X Y, et al. Lithium metal anode: Past, present, and future[J]. MetalMat, 2024, 1(1): e6.

    [77] [77] DU W B, SHAO Q N, WEI Y Q, et al. High-energy and long-cycling all-solid-state lithium-ion batteries with Li- and Mn-rich layered oxide cathodes and sulfide electrolytes[J]. ACS Energy Lett, 2022, 7(9): 3006–3014.

    [78] [78] WU Z J, SHAO Q N, WEI Y Q, et al. Multi-strategies interface and structure design of Li- and Mn-rich layered oxide for all-solid-state lithium batteries[J]. Nano Energy, 2024, 122: 109281.

    [79] [79] WANG Y, WU D X, CHEN P H, et al. Dual-function modifications for high-stability Li-rich cathode toward sulfide all-solid-state batteries[J]. Adv Funct Mater, 2024, 34(4): 2309822.

    [80] [80] SUN S, ZHAO C Z, YUAN H, et al. Eliminating interfacial O-involving degradation in Li-rich Mn-based cathodes for all-solid-state lithium batteries[J]. Sci Adv, 2022, 8(47): eadd5189.

    [81] [81] SUN S, ZHAO C Z, LIU G Y, et al. Boosting anionic redox reactions of Li-rich cathodes through lattice oxygen and Li-ion kinetics modulation in working all-solid-state batteries[J]. Adv Mater, 2025, 37(6): 2414195.

    [82] [82] LIU W Z, MENG X H, ZHOU Z Y, et al. Alleviating the sluggish kinetics of all-solid-state batteriesviacathode single-crystallization and multi-functional interface modification[J]. J Energy Chem, 2024, 98: 123–133.

    [83] [83] KONG W J, ZHAO C Z, SHEN L, et al. Bulk/interfacial structure design of Li-rich Mn-based cathodes for all-solid-state lithium batteries[J]. J Am Chem Soc, 2024, 146(41): 28190–28200.

    [84] [84] WANG Q, ZHANG Y M, YAO M, et al. A lithium-selective “OR-gate” enables fast-kinetics and ultra-stable Li-rich cathodes for polymer-based solid-state batteries[J]. Energy Environ Sci, 2025, 18(6): 2931–2939.

    [85] [85] CUI M Y, GAO N, ZHAO W S, et al. Self-regulating interfacial space charge through polyanion repulsion effect towards dendrite-free polymer lithium-metal batteries[J]. Adv Energy Mater, 2024, 14(13): 2303834.

    [86] [86] YIN X, LI D Y, HAO L W, et al. A high-energy all-solid-state lithium metal battery with “single-crystal” lithium-rich layered oxides[J]. Chem Commun, 2023, 59(5): 639–642.

    [87] [87] CHEN B T, ZHANG J C, WONG D, et al. Achieving the high capacity and high stability of Li-rich oxide cathode in garnet-based solid-state battery[J]. Angew Chem Int Ed, 2024, 63(1): e202315856.

    [88] [88] WANG C Y, JING Y Q, ZHU D, et al. Atomic origin of chemomechanical failure of layered cathodes in all-solid-state batteries[J]. J Am Chem Soc, 2024, 146(26): 17712–17718.

    [89] [89] XU Z R, JIANG Z S, KUAI C G, et al. Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials[J]. Nat Commun, 2020, 11(1): 83.

    [90] [90] ZHANG B D, ZHANG Y M, WU H C, et al. Does single-crystallization a feasible direction for designing Li-rich layered cathodes?[J]. Energy Storage Mater, 2023, 62: 102926.

    [91] [91] YU T Y, LEE H U, LEE J W, et al. Limitation of Ni-rich layered cathodes in all-solid-state lithium batteries[J]. J Mater Chem A, 2023, 11(45): 24629–24636.

    [92] [92] ZHANG Z C, JIA W Q, FENG Y, et al. An ultraconformal chemo-mechanical stable cathode interface for high-performance all-solid-state batteries at wide temperatures[J]. Energy Environ Sci, 2023, 16(10): 4453–4463.

    [93] [93] FAN Y M, OLSSON E, LIANG G M, et al. Stabilizing cobalt-free Li-rich layered oxide cathodes through oxygen lattice regulation by two-phase Ru doping[J]. Angew Chem Int Ed, 2023, 62(5): e202213806.

    [94] [94] CUI T W, LI X, FU Y Z. Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries[J]. eScience, 2024, 4(5): 100245.

    [95] [95] KIM Y J, RAJAGOPAL R, KANG S, et al. Novel dry deposition of LiNbO3 or Li2ZrO3 on LiNi0.6Co0.2Mn0.2O2 for high performance all-solid-state lithium batteries[J]. Chem Eng J, 2020, 386: 123975.

    [96] [96] GUO Y J, WANG P F, NIU Y B, et al. Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes[J]. Nat Commun, 2021, 12(1): 5267.

    [97] [97] CHEN J, CHEN H Y, MEI Y, et al. Building interface bonding and shield for stable Li-rich Mn-based oxide cathode[J]. Energy Storage Mater, 2022, 52: 736–745.

    [98] [98] HAN Y, JUNG S H, KWAK H, et al. Single- or poly-crystalline Ni-rich layered cathode, sulfide or halide solid electrolyte: Which will be the winners for all-solid-state batteries?[J]. Adv Energy Mater, 2021, 11(21): 2100126.

    [99] [99] LIU X S, CHENG Y, SU Y, et al. Revealing the surface-to-bulk degradation mechanism of nickel-rich cathode in sulfide all-solid-state batteries[J]. Energy Storage Mater, 2023, 54: 713–723.

    [100] [100] ZHU Z, YU D W, YANG Y, et al. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment[J]. Nat Energy, 2019, 4: 1049–1058.

    [101] [101] CHOI S H, SONG G, PARK K, et al. Active–inactive molten salt synthesis of Li- and Mn-rich layered oxide single crystals as cathode materials for all-solid-state batteries[J]. Chem Mater, 2024, 36(19): 9666–9676.

    [102] [102] LIU B Y, PU S D, DOERRER C, et al. The effect of volume change and stack pressure on solid-state battery cathodes[J]. SusMat, 2023, 3(5): 721–728.

    [103] [103] MENG F B, GUO H J, WANG Z X, et al. Modification by simultaneously -WO3/Li2WO4 composite coating and spinel-structure formation on Li [Li0.2Mn0.54Ni0.13Co0.13] O2 cathodeviaa simple wet process[J]. J Alloys Compd, 2019, 790: 421–432.

    [104] [104] NOLAN A M, LIU Y S, MO Y F. Solid-state chemistries stable with high-energy cathodes for lithium-ion batteries[J]. ACS Energy Lett, 2019, 4(10): 2444–2451.

    [105] [105] SUN Z, LAI Y Q, LV N, et al. Boosting the electrochemical performance of all-solid-state batteries with sulfide Li6PS5Cl solid electrolyte using Li2WO4-coated LiCoO2 cathode[J]. Adv Mater Interfaces, 2021, 8(15): 2100624.

    [106] [106] BAI X Y, XIE F, ZHANG Z Y, et al. Prospects and strategies for single-crystal NCM materials to solve all-solid-state battery cathode interface problems[J]. Adv Energy Mater, 2024, 14(34): 2401336.

    [107] [107] SUN N, SONG Y J, LIU Q S, et al. Surface-to-bulk synergistic modification of single crystal cathode enables stable cycling of sulfide-based all-solid-state batteries at 4.4 V[J]. Adv Energy Mater, 2022, 12(29): 2200682.

    [108] [108] LANGDON J, MANTHIRAM A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries[J]. Energy Storage Mater, 2021, 37: 143–160.

    [109] [109] XIAO Y R, YANG L, ZENG C Y, et al. Suppressing high voltage chemo-mechanical degradation in single crystal nickel-rich cathodes for high-performance all-solid-state lithium batteries[J]. J Energy Chem, 2025, 102: 377–385.

    [110] [110] ZHANG X Y, ZHANG Y D, LIU J D, et al. Syntheses, challenges and modifications of single-crystal cathodes for lithium-ion battery[J]. J Energy Chem, 2021, 63: 217–229.

    [111] [111] YI M Y, LI J, WANG M R, et al.In-situcoating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries[J]. J Energy Chem, 2024, 89: 137–143.

    [112] [112] WU Y Q, LI C, ZHENG X F, et al. High energy sulfide-based all-solid-state lithium batteries enabled by single-crystal Li-rich cathodes[J]. ACS Energy Lett, 2024, 9(10): 5156–5165.

    [113] [113] ZHANG H, ZENG Z Q, CHENG S J, et al. Recent progress and perspective on lithium metal battery with nickel-rich layered oxide cathode[J]. eScience, 2024, 4(6): 100265.

    [114] [114] LUO Y H, PAN Q L, WEI H X, et al. Revealing proton-coupled exchange mechanism in aqueous ion-exchange synthesis of nickel-rich layered cathodes for lithium-ion batteries[J]. eScience, 2024, 4(4): 100229.

    [115] [115] LIN T Z, CHEN S H, HARRIS S J, et al. Investigating explainable transfer learning for battery lifetime prediction under state transitions[J]. eScience, 2024, 4(5): 100280.

    [116] [116] HU H P, SHAN Y Q, ZHAO Q M, et al. The prediction of donor number and acceptor number of electrolyte solvent molecules based on machine learning[J]. J Energy Chem, 2024, 98: 374–382.

    [117] [117] GAO Y C, YUAN Y H, HUANG S Z, et al. A knowledge-data dual-driven framework for predicting the molecular properties of rechargeable battery electrolytes[J]. Angew Chem Int Ed, 2025, 64(4): e202416506.

    [118] [118] GAO Y C, YAO N, CHEN X, et al. Data-driven insight into the reductive stability of ion-solvent complexes in lithium battery electrolytes[J]. J Am Chem Soc, 2023, 145(43): 23764–23770.

    [119] [119] CHEN X, LIU X Y, SHEN X, et al. Applying machine learning to rechargeable batteries: From the microscale to the macroscale[J]. Angew Chem Int Ed, 2021, 60(46): 24354–24366.

    Tools

    Get Citation

    Copy Citation Text

    KONG Weijin, SHEN Liang, ZHAO Chenzi, LE Yicheng, GU Yifan, HU Jiangkui, ZHANG Qiang. Li-Rich Mn-Based Layered Oxide Cathodes for Solid-State Rechargeable Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1764

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 6, 2025

    Accepted: Jul. 11, 2025

    Published Online: Jul. 11, 2025

    The Author Email: ZHANG Qiang (zhang-qiang@mails.tsinghua.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20250145

    Topics