Journal of Synthetic Crystals, Volume. 51, Issue 6, 1034(2022)

SiW12 Cooperating with CsPbI3 to Improve the Photoelectric Conversion Efficiency of TiO2 Nanotubes

ZHANG Bo1, LIN Mingyu1, SUN Shuyan2, and LUO Xinze1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(35)

    [3] [3] WALSH J J, BOND A M, FORSTER R J, et al. Hybrid polyoxometalate materials for photo(electro-) chemical applications[J]. Coordination Chemistry Reviews, 2016, 306: 217-234.

    [4] [4] CHEN L, CHEN W L, WANG X L, et al. Polyoxometalates in dye-sensitized solar cells[J]. Chemical Society Reviews, 2019, 48(1): 260-284.

    [5] [5] HE P, LI X H, WANG T, et al. Keggin-type polyoxometalate/thiospinel octahedron heterostructures for photoelectronic devices[J]. Inorganic Chemistry Frontiers, 2020, 7(14): 2621-2628.

    [6] [6] NISHIMOTO Y, YOKOGAWA D, YOSHIKAWA H, et al. Super-reduced polyoxometalates: excellent molecular cluster battery components and semipermeable molecular capacitors[J]. Journal of the American Chemical Society, 2014, 136(25): 9042-9052.

    [7] [7] LIU R, SUN Z X, ZHANG Y Z, et al. Polyoxometalate-modified TiO2 nanotube arrays photoanode materials for enhanced dye-sensitized solar cells[J]. Journal of Physics and Chemistry of Solids, 2017, 109: 64-69.

    [8] [8] WELLS H L. ber Die csium- und kalium-bleihalogenide[J]. Zeitschrift Für Anorganische Chemie, 1893, 3(1): 195-210.

    [9] [9] XIAO J Y, SHI J J, LI D M, et al. Perovskite thin-film solar cell: excitation in photovoltaic science[J]. Science China Chemistry, 2015, 58(2): 221-238.

    [10] [10] ALLA M, MANJUNATH V, CHAWKI N, et al. Optimized CH3NH3PbI3-xClx based perovskite solar cell with theoretical efficiency exceeding 30%[J]. Optical Materials, 2022, 124: 112044.

    [11] [11] FAN X J. Flexible dye-sensitized solar cells assisted with lead-free perovskite halide[J]. Journal of Materials Research, 2022, 37(4): 866-875.

    [12] [12] WANG S X, PANG S Z, CHEN D Z, et al. Improving perovskite solar cell performance by compositional engineering via triple-mixed cations[J]. Solar Energy, 2021, 220: 412-417.

    [13] [13] WANG P Y, LI R J, CHEN B B, et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%[J]. Advanced Materials, 2020, 32(6): 1905766.

    [14] [14] LIU N, YOU F T, JI C, et al. Bright all-solution-processed CsPbBr3 perovskite light emitting diodes optimized by quaternary ammonium salt[J]. Current Applied Physics, 2021, 31: 60-67.

    [15] [15] ZHAO H F, CHEN H T, BAI S, et al. High-brightness perovskite light-emitting diodes based on FAPbBr3 nanocrystals with rationally designed aromatic ligands[J]. ACS Energy Letters, 2021, 6(7): 2395-2403.

    [16] [16] WANG Z B, ZHU X D, JIA H R, et al. Blue perovskite light-emitting diodes: from material preparation to device optimization[J]. Chinese Journal of Luminescence, 2020, 41(8): 879-898.

    [17] [17] WANG P, XIE J S, XIAO K, et al. CH3NH3PbBr3 quantum dot-induced nucleation for high performance perovskite light-emitting solar cells[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22320-22328.

    [18] [18] WANG Y W, ZHU Y H, HUANG J F, et al. CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium[J]. The Journal of Physical Chemistry Letters, 2016, 7(21): 4253-4258.

    [19] [19] DOANE T L, RYAN K L, PATHADE L, et al. Using perovskite nanoparticles as halide reservoirs in catalysis and as spectrochemical probes of ions in solution[J]. ACS Nano, 2016, 10(6): 5864-5872.

    [20] [20] BAG A, RADHAKRISHNAN R, NEKOVEI R, et al. Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation[J]. Solar Energy, 2020, 196: 177-182.

    [21] [21] CORREA-BAENA J P, ABATE A, SALIBA M, et al. The rapid evolution of highly efficient perovskite solar cells[J]. Energy & Environmental Science, 2017, 10(3): 710-727.

    [22] [22] WU H L, SI H N, ZHANG Z H, et al. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector[J]. Advanced Science, 2018, 5(12): 1801219.

    [23] [23] JEAN J, XIAO J, NICK R, et al. Synthesis cost dictates the commercial viability of lead sulfide and perovskite quantum dot photovoltaics[J]. Energy & Environmental Science, 2018, 11(9): 2295-2305.

    [24] [24] GU K, ZHENG D Q, LI L J, et al. High-efficiency and stable piezo-phototronic organic perovskite solar cell[J]. RSC Advances, 2018, 8(16): 8694-8698.

    [25] [25] SINGH H, DEY P, CHATTERJEE S, et al. Formamidinium containing tetra cation organic-inorganic hybrid perovskite solar cell[J]. Solar Energy, 2021, 220: 258-268.

    [26] [26] LU C, LI H, KOLODZIEJSKI K, et al. Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine[J]. Nano Research, 2018, 11(2): 762-768.

    [27] [27] WANG W Z, LI J K, NI P J, et al. Improved synthesis of perovskite CsPbX3@SiO2 (X=Cl, Br, and I) quantum dots with enhanced stability and excellent optical properties[J]. ES Materials & Manufacturing, 2019, 4: 66-73.

    [28] [28] JIA D L, CHEN J X, MEI X Y, et al. Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%[J]. Energy & Environmental Science, 2021, 14(8): 4599-4609.

    [29] [29] LI Y H, ZHOU S, XIONG Z Y, et al. Size modulation and heterovalent doping facilitated hybrid organic and perovskite quantum dot bulk heterojunction solar cells[J]. ACS Applied Energy Materials, 2020, 3(11): 11359-11367.

    [30] [30] XU S S, WANG Y H, ZHAO Y, et al. Keplerate-type polyoxometalate/semiconductor composite electrodes with light-enhanced conductivity towards highly efficient photoelectronic devices[J]. Journal of Materials Chemistry A, 2016, 4(36): 14025-14032.

    [31] [31] TANG Y, CHENG Y L, XU H, et al. Binary oxide nanofiber bundle supported Keggin-type phosphotungstic acid for the synthesis of 5-hydroxymethylfurfural[J]. Catalysis Communications, 2019, 123: 96-99.

    [32] [32] ZHENG H, WANG C H, ZHANG X T, et al. Control over energy level match in Keggin polyoxometallate-TiO2 microspheres for multielectron photocatalytic reactions[J]. Applied Catalysis B: Environmental, 2018, 234: 79-89.

    [33] [33] SONGSIRI N, REMPEL G L, PRASASSARAKICH P. Liquid-phase synthesis of isoprene from MTBE and formalin using cesium salts of silicotungstic acid[J]. Molecular Catalysis, 2017, 439: 41-49.

    [34] [34] ANDERSON N C, HENDRICKS M P, CHOI J J, et al. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding[J]. Journal of the American Chemical Society, 2013, 135(49): 18536-18548.

    [35] [35] WHEELER L M, SANEHIRA E M, MARSHALL A R, et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics[J]. Journal of the American Chemical Society, 2018, 140(33): 10504-10513.

    [36] [36] LUO X Z, LI F Y, XU B B, et al. Enhanced photovoltaic response of the first polyoxometalate-modified zinc oxide photoanode for solar cell application[J]. Journal of Materials Chemistry, 2012, 22(30): 15050-15055.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Bo, LIN Mingyu, SUN Shuyan, LUO Xinze. SiW12 Cooperating with CsPbI3 to Improve the Photoelectric Conversion Efficiency of TiO2 Nanotubes[J]. Journal of Synthetic Crystals, 2022, 51(6): 1034

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 14, 2022

    Accepted: --

    Published Online: Aug. 13, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics