Journal of Synthetic Crystals, Volume. 51, Issue 6, 1034(2022)
SiW12 Cooperating with CsPbI3 to Improve the Photoelectric Conversion Efficiency of TiO2 Nanotubes
[3] [3] WALSH J J, BOND A M, FORSTER R J, et al. Hybrid polyoxometalate materials for photo(electro-) chemical applications[J]. Coordination Chemistry Reviews, 2016, 306: 217-234.
[4] [4] CHEN L, CHEN W L, WANG X L, et al. Polyoxometalates in dye-sensitized solar cells[J]. Chemical Society Reviews, 2019, 48(1): 260-284.
[5] [5] HE P, LI X H, WANG T, et al. Keggin-type polyoxometalate/thiospinel octahedron heterostructures for photoelectronic devices[J]. Inorganic Chemistry Frontiers, 2020, 7(14): 2621-2628.
[6] [6] NISHIMOTO Y, YOKOGAWA D, YOSHIKAWA H, et al. Super-reduced polyoxometalates: excellent molecular cluster battery components and semipermeable molecular capacitors[J]. Journal of the American Chemical Society, 2014, 136(25): 9042-9052.
[7] [7] LIU R, SUN Z X, ZHANG Y Z, et al. Polyoxometalate-modified TiO2 nanotube arrays photoanode materials for enhanced dye-sensitized solar cells[J]. Journal of Physics and Chemistry of Solids, 2017, 109: 64-69.
[8] [8] WELLS H L. ber Die csium- und kalium-bleihalogenide[J]. Zeitschrift Für Anorganische Chemie, 1893, 3(1): 195-210.
[9] [9] XIAO J Y, SHI J J, LI D M, et al. Perovskite thin-film solar cell: excitation in photovoltaic science[J]. Science China Chemistry, 2015, 58(2): 221-238.
[10] [10] ALLA M, MANJUNATH V, CHAWKI N, et al. Optimized CH3NH3PbI3-xClx based perovskite solar cell with theoretical efficiency exceeding 30%[J]. Optical Materials, 2022, 124: 112044.
[11] [11] FAN X J. Flexible dye-sensitized solar cells assisted with lead-free perovskite halide[J]. Journal of Materials Research, 2022, 37(4): 866-875.
[12] [12] WANG S X, PANG S Z, CHEN D Z, et al. Improving perovskite solar cell performance by compositional engineering via triple-mixed cations[J]. Solar Energy, 2021, 220: 412-417.
[13] [13] WANG P Y, LI R J, CHEN B B, et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%[J]. Advanced Materials, 2020, 32(6): 1905766.
[14] [14] LIU N, YOU F T, JI C, et al. Bright all-solution-processed CsPbBr3 perovskite light emitting diodes optimized by quaternary ammonium salt[J]. Current Applied Physics, 2021, 31: 60-67.
[15] [15] ZHAO H F, CHEN H T, BAI S, et al. High-brightness perovskite light-emitting diodes based on FAPbBr3 nanocrystals with rationally designed aromatic ligands[J]. ACS Energy Letters, 2021, 6(7): 2395-2403.
[16] [16] WANG Z B, ZHU X D, JIA H R, et al. Blue perovskite light-emitting diodes: from material preparation to device optimization[J]. Chinese Journal of Luminescence, 2020, 41(8): 879-898.
[17] [17] WANG P, XIE J S, XIAO K, et al. CH3NH3PbBr3 quantum dot-induced nucleation for high performance perovskite light-emitting solar cells[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22320-22328.
[18] [18] WANG Y W, ZHU Y H, HUANG J F, et al. CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium[J]. The Journal of Physical Chemistry Letters, 2016, 7(21): 4253-4258.
[19] [19] DOANE T L, RYAN K L, PATHADE L, et al. Using perovskite nanoparticles as halide reservoirs in catalysis and as spectrochemical probes of ions in solution[J]. ACS Nano, 2016, 10(6): 5864-5872.
[20] [20] BAG A, RADHAKRISHNAN R, NEKOVEI R, et al. Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation[J]. Solar Energy, 2020, 196: 177-182.
[21] [21] CORREA-BAENA J P, ABATE A, SALIBA M, et al. The rapid evolution of highly efficient perovskite solar cells[J]. Energy & Environmental Science, 2017, 10(3): 710-727.
[22] [22] WU H L, SI H N, ZHANG Z H, et al. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector[J]. Advanced Science, 2018, 5(12): 1801219.
[23] [23] JEAN J, XIAO J, NICK R, et al. Synthesis cost dictates the commercial viability of lead sulfide and perovskite quantum dot photovoltaics[J]. Energy & Environmental Science, 2018, 11(9): 2295-2305.
[24] [24] GU K, ZHENG D Q, LI L J, et al. High-efficiency and stable piezo-phototronic organic perovskite solar cell[J]. RSC Advances, 2018, 8(16): 8694-8698.
[25] [25] SINGH H, DEY P, CHATTERJEE S, et al. Formamidinium containing tetra cation organic-inorganic hybrid perovskite solar cell[J]. Solar Energy, 2021, 220: 258-268.
[26] [26] LU C, LI H, KOLODZIEJSKI K, et al. Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine[J]. Nano Research, 2018, 11(2): 762-768.
[27] [27] WANG W Z, LI J K, NI P J, et al. Improved synthesis of perovskite CsPbX3@SiO2 (X=Cl, Br, and I) quantum dots with enhanced stability and excellent optical properties[J]. ES Materials & Manufacturing, 2019, 4: 66-73.
[28] [28] JIA D L, CHEN J X, MEI X Y, et al. Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%[J]. Energy & Environmental Science, 2021, 14(8): 4599-4609.
[29] [29] LI Y H, ZHOU S, XIONG Z Y, et al. Size modulation and heterovalent doping facilitated hybrid organic and perovskite quantum dot bulk heterojunction solar cells[J]. ACS Applied Energy Materials, 2020, 3(11): 11359-11367.
[30] [30] XU S S, WANG Y H, ZHAO Y, et al. Keplerate-type polyoxometalate/semiconductor composite electrodes with light-enhanced conductivity towards highly efficient photoelectronic devices[J]. Journal of Materials Chemistry A, 2016, 4(36): 14025-14032.
[31] [31] TANG Y, CHENG Y L, XU H, et al. Binary oxide nanofiber bundle supported Keggin-type phosphotungstic acid for the synthesis of 5-hydroxymethylfurfural[J]. Catalysis Communications, 2019, 123: 96-99.
[32] [32] ZHENG H, WANG C H, ZHANG X T, et al. Control over energy level match in Keggin polyoxometallate-TiO2 microspheres for multielectron photocatalytic reactions[J]. Applied Catalysis B: Environmental, 2018, 234: 79-89.
[33] [33] SONGSIRI N, REMPEL G L, PRASASSARAKICH P. Liquid-phase synthesis of isoprene from MTBE and formalin using cesium salts of silicotungstic acid[J]. Molecular Catalysis, 2017, 439: 41-49.
[34] [34] ANDERSON N C, HENDRICKS M P, CHOI J J, et al. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding[J]. Journal of the American Chemical Society, 2013, 135(49): 18536-18548.
[35] [35] WHEELER L M, SANEHIRA E M, MARSHALL A R, et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics[J]. Journal of the American Chemical Society, 2018, 140(33): 10504-10513.
[36] [36] LUO X Z, LI F Y, XU B B, et al. Enhanced photovoltaic response of the first polyoxometalate-modified zinc oxide photoanode for solar cell application[J]. Journal of Materials Chemistry, 2012, 22(30): 15050-15055.
Get Citation
Copy Citation Text
ZHANG Bo, LIN Mingyu, SUN Shuyan, LUO Xinze. SiW12 Cooperating with CsPbI3 to Improve the Photoelectric Conversion Efficiency of TiO2 Nanotubes[J]. Journal of Synthetic Crystals, 2022, 51(6): 1034
Category:
Received: Jan. 14, 2022
Accepted: --
Published Online: Aug. 13, 2022
The Author Email:
CSTR:32186.14.