Semiconductor Optoelectronics, Volume. 45, Issue 2, 327(2024)

SLAM Based on Deep Learning and Optical Flow Constraints in Dynamic Scenes

LIU Yanju, YAN Jiahua, and FENG Yingbin
Author Affiliations
  • [in Chinese]
  • show less
    References(13)

    [4] [4] Kerl C, Sturm J, Cremers D. Robust odometry estimation for RGB-D cameras[C]// 2013 IEEE Inter. Conf. on Robotics and Automation, 2013: 3748-3754.

    [5] [5] Alcantarilla P F, Yebes J J, Almaz??n J, et al. On combining visual SLAM and dense scene flow to increase the robustness of localization and mapping in dynamic environments[C]//2012 IEEE Inter. Conf. on Robotics and Automation, 2012:1290-1297.

    [6] [6] Bescós B, Fácil J M, Civera J, et al. DynaSLAM: tracking,mapping, and inpainting in dynamic environment[J]. IEEE Rob. Autom. Lett., 2018, 3(4): 4076-4083.

    [7] [7] He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]// Proc. of the IEEE Inter. Conf. on Computer Vision, 2017: 2961-2969.

    [8] [8] Su P, Luo S, Huang X. Real-time dynamic SLAM algorithm based on deep learning[J]. IEEE Access, 2022, 10: 87754-87766

    [9] [9] Zhu X, Lyu S, Wang X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]// Proc. of the IEEE/CVF Inter. Conf. on Computer Vision, 2021: 2778-2788.

    [11] [11] Chun L Z, Dian L, Zhi J Y, et al. YOLOv3: face detection in complex environments[J]. Int. J. Comput. Intell. Syst.,2020, 13(1): 1153-1160.

    [12] [12] Zhao Z, Chen X. Building 3D semantic maps for mobile robots using RGB-D camera[J]. Intelligent Service Robotics,2016, 9: 297-309.

    [13] [13] Zhou Y, Zhu W, He Y, et al. YOLOv8-based spatial target part recognition[C]// 2023 IEEE 3rd Inter. Conf. on Information Technol., Big Data and Artificial Intelligence(ICIBA), 2023, 3: 1684-1687.

    [15] [15] Campos C, Elvira R, Rodríguez J J G, et al. ORB-SLAM3:An accurate open-source library for visual, visual-inertial,and multimap slam[J]. IEEE Trans. Rob., 2021, 37(6):1874-1890.

    [16] [16] Zhang X, Zeng H, Guo S, et al. Efficient long-range attention network for image super-resolution[C]// European Conf. on Computer Vision. Cham: Springer Nature Switzerland, 2022: 649-667.

    [17] [17] Sturm J, Engelhard N, Endres F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]// 2012 IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems, 2012:573-580.

    [18] [18] Liu Y, Miura J. RDS-SLAM: Real-time dynamic SLAM using semantic segmentation methods[J]. IEEE Access,2021, 9: 23772-23785.

    Tools

    Get Citation

    Copy Citation Text

    LIU Yanju, YAN Jiahua, FENG Yingbin. SLAM Based on Deep Learning and Optical Flow Constraints in Dynamic Scenes[J]. Semiconductor Optoelectronics, 2024, 45(2): 327

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 8, 2023

    Accepted: --

    Published Online: Aug. 14, 2024

    The Author Email:

    DOI:10.16818/j.issn1001-5868.2023110804

    Topics