Laser & Optoelectronics Progress, Volume. 58, Issue 24, 2428008(2021)
Hyperspectral Semi-Supervised Classification Algorithm Based on Improved Ladder Network
Fig. 6. Model of semi-supervised classification algorithm based on improved ladder network
Fig. 8. True color image and ground truth map of Pavia University dataset. (a) True color image; (b) ground truth map
Fig. 9. True color image and ground truth map of Indian Pines dataset. (a) True color image; (b) ground truth map
Fig. 10. Classification results of different algorithms on Pavia University dataset. (a) True color image; (b) feature label map; (c) M3D-DCNN algorithm; (d) 3D-CNN-LSTM algorithm; (e) SS-CNN algorithm; (f) S4CNN algorithm; (g) 3D-CNN-LSTM-LN algorithm
Fig. 11. Classification results of different algorithms on Indian Pines dataset. (a) True color image; (b) feature label map; (c) M3D-DCNN algorithm; (d) 3D-CNN-LSTM algorithm; (e) SS-CNN algorithm; (f) S4CNN algorithm; (g) 3D-CNN-LSTM-LN algorithm
|
|
|
Get Citation
Copy Citation Text
Shihao Guan, Guang Yang, Shan Lu, Chunbai Jin, Hao Li, Zhaohong Xu. Hyperspectral Semi-Supervised Classification Algorithm Based on Improved Ladder Network[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2428008
Category: Remote Sensing and Sensors
Received: Oct. 29, 2020
Accepted: Dec. 27, 2020
Published Online: Dec. 3, 2021
The Author Email: Guang Yang (yg2599@126.com)