Optical Technique, Volume. 47, Issue 2, 238(2021)

Multi-Scale exposure image fusion based on improved intensity mapping function

LI Meng1、*, KONG Weiwei1,2, HUANG Cuiling1, and HU Yaping1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(15)

    [1] [1] Grosch T. Fast and robust high dynamic range image generation with camera and object movement[J]. Vision, Modeling and Visualization,2006,34(5):277—284.

    [2] [2] Gallo O, Gelfandz N, Chen W C, et al. Artifact-free high dynamic range imaging[C]∥International Conference on Computational Photography. New York, USA: IEEE,2009:5559003.

    [3] [3] Lee D K, Park R H, Chang S. Improved histogram based ghost removal in exposure fusion for high dynamic range images[C]∥Proceedings of the International Symposium on Consumer Electronics 2011. Singapore:IEEE,2011:586—591.

    [4] [4] Mertens T, Kautz J, Reeth F V. Exposure fusion: A simple and practical alternative to high dynamic range photography[J]. Computer Graphics Forum,2008,28(1):161—171.

    [5] [5] Sen P, Kalantari N K, Yaesoubi M, et al. Robust patch-based hdr reconstruction of dynamic scenes[J]. ACM Transactions on Graphics,2012,31(6):1—11.

    [6] [6] Kakarala R, Hebbalaguppe R. A method for fusing a pair of images in the jpeg domain[J]. Journal of Real Time Image Processing,2014,9(2):347—357.

    [7] [7] Li Z G, Zheng J H, Zhu Z J, et al. Selectively detail-enhanced fusion of differently exposed images with moving objects[J]. IEEE Transactions on Image Processing,2014,23(10):4372—4382.

    [8] [8] An J, Ha S J, Cho N. Probabilistic motion pixel detection for the reduction of ghost artifacts in high dynamic range images from multiple exposures[J]. EURASIP Journal on Image and Video Processing,2014,42(8):1—15.

    [9] [9] Liu Y, Wang Z F. Dense SIFT for ghost-free multi-exposure fusion[J]. Journal of Visual Communication and Image Representation,2015,31(8):208—224.

    [10] [10] Ma K D, Li H, Yong H, et al. Robust multi exposure image fusion: A structural patch decomposition approach[J]. IEEE Transactions on Image Processing,2017,26(5):2519—2532.

    [11] [11] Zhang W, Hu S N, Liu K. Patch-based correlation for deghosting in exposure fusion[J]. Information Sciences,2017,415/416(11):19—27.

    [12] [12] Li H, Ma K D, Yong H W, et al. Fast multi-scale structural patch decomposition for multi-exposure image fusion[J]. IEEE Transactions on Image Processing,2020,29(4):5805—5816.

    [13] [13] He K, Sun J, Tang X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(6):1397—1409.

    [14] [14] Boykov Y, Veksler O, Zabih R. Markov random fields with efficient approximations[C]∥Computer Society Conference on Computer Vision and Pattern Recognition. Santa Barbara,USA:IEEE,1998:648—655.

    [15] [15] Mittal A, Soundararajan R, Bovik A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters,2012,20(3):209—212.

    Tools

    Get Citation

    Copy Citation Text

    LI Meng, KONG Weiwei, HUANG Cuiling, HU Yaping. Multi-Scale exposure image fusion based on improved intensity mapping function[J]. Optical Technique, 2021, 47(2): 238

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 20, 2020

    Accepted: --

    Published Online: Sep. 9, 2021

    The Author Email: Meng LI (AmyLi0068@163.com)

    DOI:

    CSTR:32186.14.

    Topics