Journal of Quantum Optics, Volume. 29, Issue 2, 20202(2023)
Coherent Feedback Enhanced Quantum Hybrid Interferometer
[1] [1] GIOVANNETTI V, LLOYD S, MACCONE L. Advances in quantum metrology[J]. Nature Photonics, 2011, 5:222-229. DOI: 10.1038/nphoton.2011.35.
[2] [2] DOWLING J P, SESHADREESAN K P. Quantum Optical Technologies for Metrology, Sensing, and Imaging[J]. Journal of Lightwave Technology, 2015, 33(12):2359-2370.
[3] [3] SHAO C, CHEN Y, SUN R, et al. Limits on Lorentz violation in gravity from worldwide superconducting gravimeters[J]. Physical Review D, 2018, 97(2):024019. DOI: 10.1103/PhysRevD.97.024019.
[4] [4] DOWLING J P. Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope[J]. Physical Review A, 1998, 57(6):4736-4746. DOI: 10.1103/PhysRevA.57.4736.
[5] [5] CHEN B, QIU C, CHEN S, et al. Atom-Light Hybrid Interferometer[J]. Physical Review Letters, 2015, 115(4):043602. DOI: 10.1103/PhysRevLett.115.043602.
[6] [6] KIJBUNCHOO N, DUPEJ P, BARSOTTI L, et al. Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy[J]. Physical Review Letters, 2019, 123(23):231107. DOI: 10.1103/PhysRevLett.123.231107.
[7] [7] BRAUNSTEIN S L. Quantum limits on precision measurements of phase[J]. Physical Review Letters, 1992, 69:3598. DOI: 10.1103/PhysRevLett.69.3598.
[8] [8] CAVES C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 1981, 23(8):1693-1708. DOI: 10.1103/PhysRevD.23.1693.
[9] [9] DOWLING, JONATHAN P. Quantum Optical Metrology - The Lowdown on High-N00N States[J]. Contemporary Physics, 2008, 49(2):125-143. DOI: 10.1080/00107510802091298.
[10] [10] BOTO A N, KOK P, ABRAMS D S, et al. Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat The Diffraction Limit[J]. Physical Review Letters, 1999, 85(13):2733-2736. DOI: 10.1103/PhysRevLett.85.2733.
[11] [11] YURKE B, MCCALL S L, KLAUDER J R. SU(2) and SU(1,1) interferometers[J]. Physical Review A, 1986, 33(6):4033-4054. DOI: 10.1103/PhysRevA.33.4033.
[12] [12] ZUO X, YAN Z, FENG Y, et al. Quantum Interferometer Combining Squeezing and Parametric Amplification[J]. Physical Review Letters, 2020, 124(17):173602. DOI: 10.1103/PhysRevLett.124.173602.
[13] [13] JING J, LIU C, ZHOU Z, et al. Realization of a nonlinear interferometer with parametric amplifiers[J]. Applied Physics Letters, 2011, 99(1):333. DOI: 10.1063/1.3606549.
[14] [14] KONG J, OU Z Y, ZHANG W. Phase-measurement sensitivity beyond the standard quantum limit in an interferometer consisting of a parametric amplifier and a beam splitter[J]. Physical review A, 2013, 87(2):023825. DOI: 10.1103/PhysRevA.87.023825.
[15] [15] KAURANE M, GAETA A L, BOYD R W, et al. Amplification of vacuum fluctuations by two-beam coupling in atomic vapors[J]. Physical Review A, 1994, 50(2):r929-r932. DOI: 10.1103/physreva.50.r929.
[16] [16] DAVIS W V, KAURANEN M, NAGASAKO E M, et al. Excess noise acquired by a laser beam after propagating through an atomic-potassium vapor[J]. Physical Review A, 1995, 51(5):4152-4159. DOI: 10.1103/physreva.51.4152.
[17] [17] OU Z Y, PEREIRA S F, KIMBLE H J, et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables[J]. Physical Review Letters, 1992, 68(25):3663-3666. DOI: 10.1103/PhysRevLett.68.3663.
[18] [18] TAKENO Y, YUKAWA M, YONEZAWA M, et al. Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement[J]. Opt Express, 2007, 15:4321-4327. DOI: 10.1364/OE.15.004321.
[19] [19] MCCORMICK C F, MARINO A M, BOYER V, et al. Strong low-frequency quantum correlations from a four-wave-mixing amplifier[J]. Physical Review A, 2008, 78(4):043816.
[20] [20] XIN J, JIAN Q, JING J. Enhancement of entanglement using cascaded four-wave mixing processes[J]. Opt Lett, 2017, 42:366. DOI: 10.1364/OL.42.000366.
[21] [21] DU W, KONG J, BAO G, et al. SU(2)-in-SU(1,1) Nested Interferometer for High Sensitivity, Loss-Tolerant Quantum Metrology[J]. Physical Review Letters, 2022, 128(03):033601 DOI: 10.1103/PhysRevLett.128.033601.
[22] [22] JIAO G, ZHANG K, CHEN L Q, et al. Nonlinear phase estimation enhanced by an actively correlated Mach-Zehnder interferometer[J]. Physical Review A, 2020, 102(3):033520. DOI: 10.1103/PhysRevA.102.033520
[23] [23] TAKEOKA M, SESHADREESAN K P, YOU C, et al. Fundamental precision limit of a Mach-Zehnder interferometric sensor when one of the inputs is the vacuum[J]. Physical Review A, 2017, 96(5):052118. DOI: 10.1103/PhysRevA.96.052118.
[24] [24] LIU J, YU Y, WANG C, et al. Optimal phase sensitivity by quantum squeezing based on a Mach-Zehnder interferometer[J]. New Journal of Physics, 2020, 22(1):13031. DOI: 10.1088/1367-2630/ab6354.
[25] [25] PAN X, CHEN H, WEI T, et al. Experimental realization of a feedback optical parametric amplifier with four-wave mixing[J]. Physical Review B, 2018, 97(16):161115. DOI: 10.1103/PhysRevB.97.161115.
[27] [27] XIN J, PAN X, LU X, et al. Entanglement Enhancement from a Two-Port Feedback Optical Parametric Amplifier[J]. Physical Review Applied, 2020, 14(2):024015. DOI: 10.1103/PhysRevApplied.14.024015.
[28] [28] ZHONG Y, JING J. Enhancement of tripartite quantum correlation by coherent feedback control[J]. Physical Review A, 2020, 101(2):023813. DOI: 10.1103/PhysRevA.101.023813.
[29] [29] LIAO D, XIN J, JING J. Nonlinear interferometer based on two-port feedback nondegenerate optical parametric amplification[J]. Optics Communications, 2021, 496:127137. DOI: 10.1016/j.optcom.2021.127137.
[30] [30] JIA J, DU W, CHEN J F, et al. Generation of frequency degenerate twin beams in Rb85 vapor[J]. Optics Letters, 2017, 42(19):4024-4027. DOI: 10.1364/OL.42.004024.
[31] [31] BRAUNSTEIN S L, CAVES C M. Statistical distance and the geometry of quantum states[J]. Physical Review Letters, 1994, 72(22):3439-3443. DOI: 10.1103/PhysRevLett.72.3439.
[32] [32] FOX A M, FOX M. Quantum optics: an introduction[M]. Oxford: Oxford university press, 2006.
[33] [33] OU Z Y. Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer[J]. Physical Review A, 2012, 85(2):023185. DOI: 10.1103/PhysRevA.85.023815.
[34] [34] MARINO A M, CORZO TREJO N V, LETT P D. Effect of losses on the performance of an SU(1,1) interferometer[J]. Physical Review A, 2012, 86(2):20790-20799. DOI:10.1103/PhysRevA.86.023844.
[35] [35] MANCEAU M, LEUCHS G, KHALILI F, et al. Detection loss tolerant supersensitive phase measurement with an SU(1,1) interferometer[J]. Physical Review Letters, 2017, 119(22):223604. DOI: 10.1103/PhysRevLett.119.223604.
[36] [36] ZHANG J D, YOU C, LI C, et al. Phase sensitivity approaching the quantum Cramér-Rao bound in a modified SU (1, 1) interferometer[J]. Physical Review A, 2021, 103(3):032617. DOI: 10.1103/PhysRevA.103.032617.
Get Citation
Copy Citation Text
LIU Pan, YU Zhi-fei, HUANG Wen-feng, WU Yuan?, CHEN Li-qing. Coherent Feedback Enhanced Quantum Hybrid Interferometer[J]. Journal of Quantum Optics, 2023, 29(2): 20202
Category:
Received: Apr. 11, 2022
Accepted: --
Published Online: Mar. 15, 2024
The Author Email: WU Yuan? (ywu@phy.ecnu.edu.cn)