Laser & Optoelectronics Progress, Volume. 61, Issue 5, 0500007(2024)
Advances in the Remote Laser Speech Signal Detection Technology
[1] Davis A, Rubinstein M, Wadhwa N et al. The visual microphone: passive recovery of sound from video[J]. ACM Transactions on Graphics, 33, 1-10(2014).
[2] Xiang X X, Zhang X J, Chen H Z. Acquisition and enhancement of remote human vocal signals based on Doppler radar[J]. IEEE Sensors Journal, 21, 20348-20361(2021).
[3] Li W H, Liu M, Zhu Z G et al. LDV remote voice acquisition and enhancement[C], 262-265(2006).
[4] Bianchi S, Giacomozzi E. Long-range detection of acoustic vibrations by speckle tracking[J]. Applied Optics, 58, 7805-7809(2019).
[5] Mims III F M. Surreptitious interception of conversations with lasers[J]. Optics News, 11, 6-12(1985).
[6] Luo H J, Zhu X. Research on laser eavesdropping technique[J]. Laser & Optronics Progress, 40, 53-56(2003).
[7] Wang X. Research on long-distance laser vibration measurement technology[D], 21-39(2018).
[8] Bianchi S. Vibration detection by observation of speckle patterns[J]. Applied Optics, 53, 931-936(2014).
[9] Veber A A, Lyashedko A, Sholokhov E et al. Laser vibrometry based on analysis of the speckle pattern from a remote object[J]. Applied Physics B, 105, 613-617(2011).
[10] Zalevsky Z, Beiderman Y, Margalit I et al. Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern[J]. Optics Express, 17, 21566-21580(2009).
[11] Dai C, Liu C, Wu Y F et al. Audio signal detection and enhancement based on linear CMOS array and multi-channel data fusion[J]. IEEE Access, 8, 133463-133469(2020).
[12] Huang X Y, Guo W, Yu R et al. Real-time high sensibility vibration detection based on phase correlation of line speckle patterns[J]. Optics & Laser Technology, 148, 107759(2022).
[13] Barcellona C, Halpaap D, Amil P et al. Remote recovery of audio signals from videos of optical speckle patterns: a comparative study of signal recovery algorithms[J]. Optics Express, 28, 8716-8723(2020).
[14] Chen Z Y, Wang C, Huang C H et al. Audio signal reconstruction based on adaptively selected seed points from laser speckle images[J]. Optics Communications, 331, 6-13(2014).
[15] Zhu G, Yao X R, Qiu P et al. Sound recovery via intensity variations of speckle pattern pixels selected with variance-based method[J]. Optical Engineering, 57, 026117(2018).
[16] Wu N, Haruyama S. Real-time sound detection and regeneration based on optical flow algorithm of laser speckle images[C](2019).
[17] Wu N, Haruyama S. Real-time audio detection and regeneration of moving sound source based on optical flow algorithm of laser speckle images[J]. Optics Express, 28, 4475-4488(2020).
[18] Wu N, Haruyama S. The 20k samples-per-second real time detection of acoustic vibration based on displacement estimation of one-dimensional laser speckle images[J]. Sensors, 21, 2938(2021).
[19] Farnebäck G. Two-frame motion estimation based on polynomial expansion[M]. Bigun J, Gustavsson T. Image analysis. Lecture notes in computer science, 2749, 363-370(2003).
[20] Yeh Y, Cummins H Z. Localized fluid flow measurements with an He-Ne laser spectrometer[J]. Applied Physics Letters, 4, 176-178(1964).
[21] Rothberg S J, Allen M S, Castellini P et al. An international review of laser Doppler vibrometry: making light work of vibration measurement[J]. Optics and Lasers in Engineering, 99, 11-22(2017).
[22] Suh J G, Kim H Y, Yôiti S. Measurement of resonance frequency and loss factor of a microphone diaphragm using a laser vibrometer[J]. Applied Acoustics, 71, 258-261(2010).
[23] Sun W, Chen T C, Zheng J Y et al. VibroSense: recognizing home activities by deep learning subtle vibrations on an interior surface of a house from a single point using laser Doppler vibrometry[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4, 1-28(2020).
[24] Haupt R W, Rolt K D. Standoff acoustic laser technique to locate buried land mines[J]. Lincoln Laboratory Journal, 15, 3-22(2005).
[25] Kessler S S, Spearing S M, Atalla M J et al. Damage detection in composite materials using frequency response methods[J]. Composites Part B: Engineering, 33, 87-95(2002).
[26] Zipser L, Franke H, Olsson E et al. Reconstructing two-dimensional acoustic object fields by use of digital phase conjugation of scanning laser vibrometry recordings[J]. Applied Optics, 42, 5831-5838(2003).
[27] Zhang H Y, Lü T, Yan C H. The novel role of arctangent phase algorithm and voice enhancement techniques in laser hearing[J]. Applied Acoustics, 126, 136-142(2017).
[28] Zhang Q, Zhang J Y, Zeng H L et al. Acoustic signal detection system using PGC demodulation algorithm and laser Doppler effect[J]. Infrared and Laser Engineering, 40, 1115-1118(2011).
[29] Lü T. Research on the remote laser coherent speech signal detection technology[D], 19-21, 42(2019).
[30] Qu Y F, Wang T, Zhu Z G. Vision-aided laser Doppler vibrometry for remote automatic voice detection[J]. IEEE/ASME Transactions on Mechatronics, 16, 1110-1119(2011).
[31] Qu Y F, Wang T, Zhu Z G. Remote audio/video acquisition for human signature detection[C], 66-71(2009).
[32] Avargel Y, Cohen I. Speech measurements using a laser Doppler vibrometer sensor: application to speech enhancement[C], 109-114(2011).
[33] Shang J H, He Y, Liu D et al. Laser Doppler vibrometer for real-time speech-signal acquirement[J]. Chinese Optics Letters, 7, 732-733(2009).
[34] Li R, Madampoulos N, Zhu Z G et al. Performance comparison of an all-fiber-based laser Doppler vibrometer for remote acoustical signal detection using short and long coherence length lasers[J]. Applied Optics, 51, 5011-5018(2012).
[35] Lü T, Zhang H Y, Yan C H. Double mode surveillance system based on remote audio/video signals acquisition[J]. Applied Acoustics, 129, 316-321(2018).
[36] Wu S S, Lü T, Han X Y et al. Remote audio signals detection using a partial-fiber laser Doppler vibrometer[J]. Applied Acoustics, 130, 216-221(2018).
[37] Peng S P, Wu S S, Li Y Y et al. All-fiber monostatic pulsed laser Doppler vibrometer: a digital signal processing method to eliminate cochannel interference[J]. Optics & Laser Technology, 124, 105952(2020).
[38] Wu S S. Research on micro-vibration detection technology of medium and long distance fiber laser Doppler[D], 57-73(2020).
[39] Kong X X, Zhang W X, Cai Q S et al. Multi beam hybrid heterodyne interferometry based phase enhancement technology[J]. Acta Physica Sinica, 69, 190601(2020).
[40] Kong X X, Xiang L B, Cai Q S et al. Three-beam conjugate enhanced micro-vibration detection[J]. Optical Engineering, 60, 104104(2021).
[41] Giuliani G, Norgia M, Donati S et al. Laser diode self-mixing technique for sensing applications[J]. Journal of Optics A: Pure and Applied Optics, 4, S283-S294(2002).
[42] Xu Z, Li J Y, Zhang S L et al. Remote eavesdropping at 200 meters distance based on laser feedback interferometry with single-photon sensitivity[J]. Optics and Lasers in Engineering, 141, 106562(2021).
[43] Xu Z, Zhang X L. Long-distance vibration measurement based on laser frequency-shifted feedback interferometry[J]. Journal of Applied Optics, 41, 1277-1283(2020).
[44] Abe K, Otsuka K, Ko J Y. Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction[J]. New Journal of Physics, 5, 8(2003).
[45] Otsuka K. Long-haul self-mixing interference and remote sensing of a distant moving target with a thin-slice solid-state laser[J]. Optics Letters, 39, 1069-1072(2014).
[46] Wu Z, Zhang W X, Bin X L et al. Laser interception technique with heterodyne self-mixing interferometry[J]. Proceedings of SPIE, 10797, 107970N(2018).
[47] Lü T, Han X Y, Wu S S et al. The effect of speckles noise on the Laser Doppler Vibrometry for remote speech detection[J]. Optics Communications, 440, 117-125(2019).
[48] Jin Y, Li Z L. A new method for eliminating speckle noise from Laser Doppler Vibrometer signals[J]. Journal of Physics: Conference Series, 2041, 012007(2021).
[49] Li R, Wang T, Zhu Z G et al. Vibration characteristics of various surfaces using an LDV for long-range voice acquisition[J]. IEEE Sensors Journal, 11, 1415-1422(2010).
[50] Wang Y H, Zhang W X, Wu Z et al. Highly-accurate and real-time speech measurement for laser Doppler vibrometers[J]. IEICE Transactions on Information and Systems, 105, 1568-1580(2022).
[51] Chen H K, Wang T F, Wu S S et al. Research on separation and enhancement of speech micro-vibration from macro motion[J]. Optoelectronics Letters, 16, 462-466(2020).
[52] Peng R H, Zheng C S, Li X D. Bandwidth extension for speech acquired by laser Doppler vibrometer with an auxiliary microphone[C](2016).
[53] Cai C K, Iwai K, Nishiura T et al. Speech enhancement for optical laser microphone with deep neural network[C], 449-454(2020).
[54] Zhang W L. Research on the speech enhancement technique of laser detector system[D], 13-15(2017).
[55] Peng S P, Lü T, Han X Y et al. Remote speaker recognition based on the enhanced LDV-captured speech[J]. Applied Acoustics, 143, 165-170(2019).
[56] Lü T, Guo J, Zhang H Y et al. Acquirement and enhancement of remote speech signals[J]. Optoelectronics Letters, 13, 275-278(2017).
[57] Cohen I, Berdugo B. Speech enhancement for non-stationary noise environments[J]. Signal Processing, 81, 2403-2418(2001).
[58] Qu Z, Zhang B H. An improved wavelet threshold algorithm applied in laser interception[J]. Laser Technology, 38, 218-224(2014).
[59] Chen F M, Li C T, An Q et al. Noise suppression in 94 GHz radar-detected speech based on perceptual wavelet packet[J]. Entropy, 18, 265(2016).
[60] Chen F M, Li S, Li C T et al. A novel method for speech acquisition and enhancement by 94 GHz millimeter-wave sensor[J]. Sensors, 16, 50(2015).
[61] Wang D L, Chen J T. Supervised speech separation based on deep learning: an overview[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26, 1702-1726(2018).
[62] Bai T, Wu J, Li M L et al. Application of DRNN in voice measurement system of laser Doppler vibrometer[J]. Laser Technology, 43, 109-114(2019).
[63] Liu C, Ai Y, Ling Z H. Phase spectrum recovery for enhancing low-quality speech captured by laser microphones[C](2021).
[64] Hao X, Su X D, Wang Z Y et al. UNetGAN: a robust speech enhancement approach in time domain for extremely low signal-to-noise ratio condition[C], 1786-1790(2019).
[65] Pandey A, Wang D L. TCNN: temporal convolutional neural network for real-time speech enhancement in the time domain[C], 6875-6879(2019).
[66] Wang Y H, Zhang W X, Kong X X et al. Two-sided LPC-based speckle noise removal for laser speech detection systems[J]. IEICE Transactions on Information and Systems, 104, 850-862(2021).
Get Citation
Copy Citation Text
Xiaobo Rui, Xinyue Kong, Leixia Li, Zhou Wu, Yongbiao Wang, Yahui Wang, Lixin Xu, Yu Zhang, Wenxi Zhang. Advances in the Remote Laser Speech Signal Detection Technology[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0500007
Category: Reviews
Received: Jan. 17, 2023
Accepted: Mar. 1, 2023
Published Online: Feb. 26, 2024
The Author Email: Zhou Wu (wz@aircas.ac.cn)
CSTR:32186.14.LOP230527