High Power Laser Science and Engineering, Volume. 13, Issue 3, 03000e43(2025)

Investigating high-energy Hermite–Gaussian and vortex laser generation in alexandrite

Enlin Cai1,2,3, Shuaiyi Zhang4、*, Tao Li5, Jie Wang2, and Min Chen1,2,3、*
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
  • 2Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
  • 3University of Chinese Academy of Sciences, Beijing, China
  • 4Shandong Advanced Optoelectronic Materials and Technologies Engineering Laboratory, School of Mathematics and Physics, Qingdao University of Science & Technology, Qingdao, China
  • 5School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao, China
  • show less
    Figures & Tables(9)
    Schematic diagram of the generation of a high-energy Hermite–Gaussian laser. LD, laser diode; CL, collimating lens; FL, focusing lens; IC, input coupler; OC, output coupler. Inset: defect stripes at the OC and crystal structure of HfTe2.
    (a) Light transmittance of HfTe2 in the wavelength range of 350–1100 nm. Inset: energy band structure and density of states of HfTe2. (b) Saturation absorption and reverse saturation absorption results of HfTe2 based on an open aperture Z-scan. Inset: the principle of saturation absorption and reverse saturation absorption process. (c) Surface microstructure of HfTe2 by SEM. (d) Thickness of single-layer HfTe2 nanosheets by AFM. Inset: the AFM height image in the area of 30 μm × 30 μm. (e) Raman spectrum of HfTe2. Inset: EDS element analysis. (f) XRD pattern of HfTe2.
    (a) The far-field intensity distribution of Hermite–Gaussian lasers of different orders and the vortex laser. (b) The corresponding defect areas on the output coupling mirror.
    (a) Output characteristics of high-energy HG10, HG20 laser and vortex laser. Transition state pulse of the HG10 laser at (b) 10 μs; (c) 5 ms; (d) 200 μs scales.
    (a) Spectrum. (b) Repetition rate. (c) Pulse width. (d) Pulse energy. (e) Peak power of the HG10 mode versus absorbed pump power at the low-repetition-rate state. (f) Typical Q-switched pulse train and (g) temporal pulse shape of the HG10 mode at maximum average output power.
    (a) Repetition rate. (b) Pulse energy. (c) Pulse width. (d) Peak power of HG20 and vortex mode laser versus absorbed pump power.
    (a) Schematic diagram of wavelength-tunable Q-switched vortex laser based on an etalon. (b) Fluorescence spectrum of alexandrite excited by a 638 nm pump laser. (c) Laser spectra and relative intensities at different wavelengths within the alexandrite wavelength tuning range. (d) Repetition rate and pulse width. (e) Pulse energy and peak power of passively Q-switched vortex laser versus wavelength.
    (a) Typical intensity profile of the high-energy vortex pulse laser. (b) Mach–Zehnder interferometer for characterizing the topological charge of the optical vortex. (c) Beam profile interference patterns for the vortex laser. (d) Experimentally measured transverse intensity profile and its theoretical fit.
    • Table 1. Comparative characteristics of Q-switched high-order HG and vortex mode lasers.

      View table
      View in Article

      Table 1. Comparative characteristics of Q-switched high-order HG and vortex mode lasers.

      ModeWavelengthGain medium (SA)Output powerPulse energyReference
      HG1064 nmNd:YAG (Cr:YAG)1.32 W22 μJ[29]
      HG1079 nmNd:LYSO (Cr:YAG)1.96 W63 μJ[30]
      HG1064 nmNd:YAG (Cr:YAG)780 mW3 μJ[31]
      HG2018.3 nmTm:LuYAG (active)870 mW1.51 mJ[32]
      Vortex607 nmPr:YLF (Co:ASL)139 mW0.89 μJ[33]
      Vortex639 nmPr:YLF (Co:ASL)1.35 W2.5 μJ[34]
      Vortex1064 nmNd:YAG (Ag:LNOI)130 mW23.4 nJ[35]
      Vortex1064 nmNd:YAG (Cr:YAG)760 mW18 μJ[36]
      Vortex1063 nmNd:GdVO4 (active)9.38 W469 μJ[37]
      Vortex1647.7 nmEr:LuYAG (active)940 mW660 μJ[38]
      Vortex1937.9 nmTm:YAP (self)83 mW1.1 μJ[39]
      Vortex2 μmTm:YALO3 (self)4.8 W38.8 μJ[40]
      HG762 nmAlexandrite (HfTe2)1.52 W5.85 mJThis work
      Vortex762 nmAlexandrite (HfTe2)1.48 W7.40 mJThis work
    Tools

    Get Citation

    Copy Citation Text

    Enlin Cai, Shuaiyi Zhang, Tao Li, Jie Wang, Min Chen. Investigating high-energy Hermite–Gaussian and vortex laser generation in alexandrite[J]. High Power Laser Science and Engineering, 2025, 13(3): 03000e43

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Feb. 17, 2025

    Accepted: Mar. 25, 2025

    Published Online: Jul. 14, 2025

    The Author Email: Min Chen (chenm@sari.ac.cn)

    DOI:10.1017/hpl.2025.34

    CSTR:32185.14.hpl.2025.34

    Topics