Chinese Journal of Lasers, Volume. 44, Issue 2, 201004(2017)

New Progress and Phenomena of Modal Instability in Fiber Lasers

Shi Chen, Tao Rumao, Wang Xiaolin, Zhou Pu, Xu Xiaojun, and Lu Qisheng
Author Affiliations
  • [in Chinese]
  • show less
    References(52)

    [1] [1] Shi W, Fang Q, Zhu X S, et al. Fiber lasers and their applications[J]. Applied Optics, 2014, 53(28): 6554-6568.

    [2] [2] Saraceno C, Emaury F, Diebold A, et al. Trends in high-power ultrafast lasers[C]. SPIE, 2016, 9835: 98350X.

    [3] [3] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241.

    [4] [4] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

    [5] [5] Otto H J, Jauregui C, Limpert J, et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[C]. SPIE, 2016, 9728: 97280E

    [6] [6] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.

    [7] [7] Wirth C, Schreiber T, Rekas M, et al. High-power linear-polarized narrow linewidth photonic crystal fiber amplifier[C]. SPIE, 2010, 7580: 75801H

    [8] [8] Smith A V, Smith J J. Overview of a steady-periodic model of modal instability in fiber amplifiers[J]. Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 472-483.

    [9] [9] Jauregui C, Limpert J, Tunnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.

    [10] [10] Hansen K R, Alkeskjold T T, Broeng J, et al. Thermally induced mode coupling in rare-earth doped fiber amplifiers[J]. Optics Letters, 2012, 37(12): 2382-2384.

    [11] [11] Smith A V, Smith J J. Steady-periodic method for modeling mode instability in fiber amplifiers[J]. Optics Express, 2013, 21(3): 2606-2623.

    [12] [12] Jauregui C, Otto H J, Limpert J, et al. Mode instabilities in high-power bidirectional fiber amplifiers and lasers[C]. Advanced Solid State Lasers Conference, 2015: ATh2A.24

    [14] [14] Tao R M, Ma P F, Wang X L, et al. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers[J]. Laser Phys Lett, 2015(12): 085101.

    [15] [15] Smith A V, Smith J J. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers[J]. Optics Express, 2012, 20(22): 24545-24558.

    [16] [16] Smith A V, Smith J J. Spontaneous Rayleigh seed for stimulated Rayleigh scattering in high power fiber amplifiers[J]. IEEE Photonics Journal, 2013, 5(5): 7100807.

    [17] [17] Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(12): 12912-12925.

    [18] [18] Tao Rumao, Zhou Po, Xiao Hu, et al. Progress of study on mode instability in high power fiber amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020001.

    [19] [19] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.

    [20] [20] Laurila M, Jrgensen M M, Hansen K R, et al. Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability[J]. Optics Express, 2012, 20(5): 5742-5753.

    [21] [21] Johansen M M, Laurila M, Maack M D, et al. Frequency resolved transverse mode instability in rod fiber amplifiers[J]. Optics Express, 2013, 21(19): 21847-21856.

    [22] [22] Otto H J, Modsching N, Jauregui C, et al. Impact of photodarkening on the mode instability threshold[J]. Optics Express, 2015, 23(12): 15265-15277.

    [23] [23] Jansen F, Stutzki F, Otto H J, et al. Thermally induced waveguide changes in active fibers[J]. Optics Express, 2012, 20(4): 3997-4008.

    [24] [24] Otto H J, Stutzki F, Jansen F, et al. Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers[J]. Optics Express, 2012, 20(14): 15710-15722.

    [25] [25] Haarlammert N, de Vries O, LiemA, et al. Build up and decay of mode instability in a high power fiber amplifier[J]. Optics Express, 2012, 20(12): 13274-13283.

    [26] [26] Tao R M, Ma P F, Wang X L, et al. 1.4 kW all-fiber narrow-linewidth polarization-maintained fiber amplifier[C]. SPIE, 2015, 9255: 92550B.

    [27] [27] Otto H J, Stutzki F, Modsching N, et al. 2 kW average power from a pulsed Yb-doped rod-type fiber amplifier[J]. Optics Letters, 2014, 39(22): 6446-6449.

    [28] [28] Smith J J, Smith A V. Influence of signal bandwidth on mode instability thresholds of fiber amplifiers[C]. SPIE, 2015, 9344: 93440L.

    [29] [29] Tao R M, Ma P F. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers[J]. Laser Physics Letters, 2015, 12(8): 085101.

    [30] [30] Dong L. Stimulated thermal Rayleigh scattering in optical fibers[J]. Optics Express, 2013, 21(3): 2642-2656.

    [31] [31] Hu I N, Zhu C, Zhang C, et al. Analytical time-dependent theory of thermally induced modal instabilities in high power fiber amplifiers[C]. SPIE, 2013, 8601: 860109.

    [32] [32] Tao R M, Ma P, Wang X, et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. Journal of Quantum Electronics, 2015, 51(8): 1-6.

    [33] [33] Ward B G. Modeling of transient modal instability in fiber amplifiers[J]. Optics Express, 2013, 21(10): 12053-12067.

    [34] [34] Smith A V, Smith J J. Mode instability thresholds of fiber amplifiers[C]. SPIE, 2013, 8601: 860108.

    [35] [35] Hupel C, Kuhn S, Hein S, et al. MCVD based fabrication of low-NA fibers for high power fiber laser application[C]. Advanced Solid State Lasers Conference, 2015: AM4A.2

    [36] [36] Ma P F, Tao R M, Su R T, et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4): 4187-4195.

    [37] [37] Naderi S, Dajani I, Madden T, et al. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations[J]. Optics Express, 2013, 21(13): 16111-16129.

    [38] [38] Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811W output power[J]. Optics Letters, 2014, 39(3): 666-669.

    [39] [39] Hansen K R, Lgsgaard J. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers[J]. Optics Express,2014, 22(9): 11267-11278.

    [40] [40] Smith A V, Smith J J. Increasing mode instability thresholds of fiber amplifiers by gain saturation[J]. Optics Express, 2013, 21(13): 15168-15182.

    [41] [41] Tao R M, Ma P F. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 2015, 17(4): 45504.

    [42] [42] Ward B. Theory and modeling of photo darkening-induced quasi static degradation in fiber amplifiers[J]. Optics Express,2016, 24(4): 3488-3501.

    [43] [43] Lgsgaard J. Static thermo-optic instability in double-pass fiber amplifiers[J]. Optics Express, 2016, 24(12): 13429-13443.

    [44] [44] You Jie, Yu Hailong, Wang Xiaolin, et al. Advance in study on photodarkening of rare-earth doped fibers[J]. Laser & Optoelectronics Progress, 2014, 51(1): 010003.

    [45] [45] Antipov O, Kuznetsov M, Tyrtyshnyy V, et al. Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers: influence of a backward reflection[C]. SPIE, 2016, 9728: 97280A.

    [46] [46] Antipov O, Kuznetsov M, Alekseev D, et al. Influence of a backward reflection on low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers[J]. Optics Express, 2016, 24(13): 14871-14879.

    [47] [47] Wang X L, Zhang H W, Su R T, et al. Experimental comparison of mode instability (MI) in high power fiber oscillator and fiber amplifier[C]. Laser Optics, 2016.

    [48] [48] Kuznetsov M S, Antipov O L, Fotiadi A A. et al. Electronic and thermal refractive index changes in Ytterbium-doped fiber amplifiers[J]. Optics Express, 2013, 21(19): 22374-22388.

    [49] [49] Lee K H, Lee K, Kim Y, et al. Transverse mode instability induced by stimulated Brillouin scattering in a pulsed single-frequency large-core fiber amplifier[J]. Applied Optics, 2015, 54(2): 189-194.

    [50] [50] Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers[C]. SPIE, 2014, 8961: 89611R.

    [51] [51] Hejaz K, Norouzey A. Controlling mode instability in a 500 W ytterbium-doped fiber laser[J]. Laser Physics, 2014, 24(2): 025102.

    [52] [52] Yang B L, Zhang H W. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW[J]. Journal of Optics, 2016, 18(10): 105803.

    [53] [53] Filippov V, Ustimchik V, Chamorovskii Y. et al. Impact of axial profile of the gain medium on the mode instability in lasers: regular versus tapered fibers[C]. European Quantum Electronics Conference, 2015: CJ_10_5

    Tools

    Get Citation

    Copy Citation Text

    Shi Chen, Tao Rumao, Wang Xiaolin, Zhou Pu, Xu Xiaojun, Lu Qisheng. New Progress and Phenomena of Modal Instability in Fiber Lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 201004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Sep. 18, 2016

    Accepted: --

    Published Online: Feb. 22, 2017

    The Author Email:

    DOI:10.3788/cjl201744.0201004

    Topics