Chinese Journal of Lasers, Volume. 44, Issue 2, 201004(2017)
New Progress and Phenomena of Modal Instability in Fiber Lasers
[1] [1] Shi W, Fang Q, Zhu X S, et al. Fiber lasers and their applications[J]. Applied Optics, 2014, 53(28): 6554-6568.
[2] [2] Saraceno C, Emaury F, Diebold A, et al. Trends in high-power ultrafast lasers[C]. SPIE, 2016, 9835: 98350X.
[3] [3] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241.
[4] [4] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.
[5] [5] Otto H J, Jauregui C, Limpert J, et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[C]. SPIE, 2016, 9728: 97280E
[6] [6] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.
[7] [7] Wirth C, Schreiber T, Rekas M, et al. High-power linear-polarized narrow linewidth photonic crystal fiber amplifier[C]. SPIE, 2010, 7580: 75801H
[8] [8] Smith A V, Smith J J. Overview of a steady-periodic model of modal instability in fiber amplifiers[J]. Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 472-483.
[9] [9] Jauregui C, Limpert J, Tunnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.
[10] [10] Hansen K R, Alkeskjold T T, Broeng J, et al. Thermally induced mode coupling in rare-earth doped fiber amplifiers[J]. Optics Letters, 2012, 37(12): 2382-2384.
[11] [11] Smith A V, Smith J J. Steady-periodic method for modeling mode instability in fiber amplifiers[J]. Optics Express, 2013, 21(3): 2606-2623.
[12] [12] Jauregui C, Otto H J, Limpert J, et al. Mode instabilities in high-power bidirectional fiber amplifiers and lasers[C]. Advanced Solid State Lasers Conference, 2015: ATh2A.24
[14] [14] Tao R M, Ma P F, Wang X L, et al. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers[J]. Laser Phys Lett, 2015(12): 085101.
[15] [15] Smith A V, Smith J J. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers[J]. Optics Express, 2012, 20(22): 24545-24558.
[16] [16] Smith A V, Smith J J. Spontaneous Rayleigh seed for stimulated Rayleigh scattering in high power fiber amplifiers[J]. IEEE Photonics Journal, 2013, 5(5): 7100807.
[17] [17] Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(12): 12912-12925.
[18] [18] Tao Rumao, Zhou Po, Xiao Hu, et al. Progress of study on mode instability in high power fiber amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020001.
[19] [19] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.
[20] [20] Laurila M, Jrgensen M M, Hansen K R, et al. Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability[J]. Optics Express, 2012, 20(5): 5742-5753.
[21] [21] Johansen M M, Laurila M, Maack M D, et al. Frequency resolved transverse mode instability in rod fiber amplifiers[J]. Optics Express, 2013, 21(19): 21847-21856.
[22] [22] Otto H J, Modsching N, Jauregui C, et al. Impact of photodarkening on the mode instability threshold[J]. Optics Express, 2015, 23(12): 15265-15277.
[23] [23] Jansen F, Stutzki F, Otto H J, et al. Thermally induced waveguide changes in active fibers[J]. Optics Express, 2012, 20(4): 3997-4008.
[24] [24] Otto H J, Stutzki F, Jansen F, et al. Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers[J]. Optics Express, 2012, 20(14): 15710-15722.
[25] [25] Haarlammert N, de Vries O, LiemA, et al. Build up and decay of mode instability in a high power fiber amplifier[J]. Optics Express, 2012, 20(12): 13274-13283.
[26] [26] Tao R M, Ma P F, Wang X L, et al. 1.4 kW all-fiber narrow-linewidth polarization-maintained fiber amplifier[C]. SPIE, 2015, 9255: 92550B.
[27] [27] Otto H J, Stutzki F, Modsching N, et al. 2 kW average power from a pulsed Yb-doped rod-type fiber amplifier[J]. Optics Letters, 2014, 39(22): 6446-6449.
[28] [28] Smith J J, Smith A V. Influence of signal bandwidth on mode instability thresholds of fiber amplifiers[C]. SPIE, 2015, 9344: 93440L.
[29] [29] Tao R M, Ma P F. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers[J]. Laser Physics Letters, 2015, 12(8): 085101.
[30] [30] Dong L. Stimulated thermal Rayleigh scattering in optical fibers[J]. Optics Express, 2013, 21(3): 2642-2656.
[31] [31] Hu I N, Zhu C, Zhang C, et al. Analytical time-dependent theory of thermally induced modal instabilities in high power fiber amplifiers[C]. SPIE, 2013, 8601: 860109.
[32] [32] Tao R M, Ma P, Wang X, et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. Journal of Quantum Electronics, 2015, 51(8): 1-6.
[33] [33] Ward B G. Modeling of transient modal instability in fiber amplifiers[J]. Optics Express, 2013, 21(10): 12053-12067.
[34] [34] Smith A V, Smith J J. Mode instability thresholds of fiber amplifiers[C]. SPIE, 2013, 8601: 860108.
[35] [35] Hupel C, Kuhn S, Hein S, et al. MCVD based fabrication of low-NA fibers for high power fiber laser application[C]. Advanced Solid State Lasers Conference, 2015: AM4A.2
[36] [36] Ma P F, Tao R M, Su R T, et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4): 4187-4195.
[37] [37] Naderi S, Dajani I, Madden T, et al. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations[J]. Optics Express, 2013, 21(13): 16111-16129.
[38] [38] Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811W output power[J]. Optics Letters, 2014, 39(3): 666-669.
[39] [39] Hansen K R, Lgsgaard J. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers[J]. Optics Express,2014, 22(9): 11267-11278.
[40] [40] Smith A V, Smith J J. Increasing mode instability thresholds of fiber amplifiers by gain saturation[J]. Optics Express, 2013, 21(13): 15168-15182.
[41] [41] Tao R M, Ma P F. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 2015, 17(4): 45504.
[42] [42] Ward B. Theory and modeling of photo darkening-induced quasi static degradation in fiber amplifiers[J]. Optics Express,2016, 24(4): 3488-3501.
[43] [43] Lgsgaard J. Static thermo-optic instability in double-pass fiber amplifiers[J]. Optics Express, 2016, 24(12): 13429-13443.
[44] [44] You Jie, Yu Hailong, Wang Xiaolin, et al. Advance in study on photodarkening of rare-earth doped fibers[J]. Laser & Optoelectronics Progress, 2014, 51(1): 010003.
[45] [45] Antipov O, Kuznetsov M, Tyrtyshnyy V, et al. Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers: influence of a backward reflection[C]. SPIE, 2016, 9728: 97280A.
[46] [46] Antipov O, Kuznetsov M, Alekseev D, et al. Influence of a backward reflection on low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers[J]. Optics Express, 2016, 24(13): 14871-14879.
[47] [47] Wang X L, Zhang H W, Su R T, et al. Experimental comparison of mode instability (MI) in high power fiber oscillator and fiber amplifier[C]. Laser Optics, 2016.
[48] [48] Kuznetsov M S, Antipov O L, Fotiadi A A. et al. Electronic and thermal refractive index changes in Ytterbium-doped fiber amplifiers[J]. Optics Express, 2013, 21(19): 22374-22388.
[49] [49] Lee K H, Lee K, Kim Y, et al. Transverse mode instability induced by stimulated Brillouin scattering in a pulsed single-frequency large-core fiber amplifier[J]. Applied Optics, 2015, 54(2): 189-194.
[50] [50] Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers[C]. SPIE, 2014, 8961: 89611R.
[51] [51] Hejaz K, Norouzey A. Controlling mode instability in a 500 W ytterbium-doped fiber laser[J]. Laser Physics, 2014, 24(2): 025102.
[52] [52] Yang B L, Zhang H W. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW[J]. Journal of Optics, 2016, 18(10): 105803.
[53] [53] Filippov V, Ustimchik V, Chamorovskii Y. et al. Impact of axial profile of the gain medium on the mode instability in lasers: regular versus tapered fibers[C]. European Quantum Electronics Conference, 2015: CJ_10_5
Get Citation
Copy Citation Text
Shi Chen, Tao Rumao, Wang Xiaolin, Zhou Pu, Xu Xiaojun, Lu Qisheng. New Progress and Phenomena of Modal Instability in Fiber Lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 201004
Category: laser devices and laser physics
Received: Sep. 18, 2016
Accepted: --
Published Online: Feb. 22, 2017
The Author Email: