Chinese Journal of Lasers, Volume. 49, Issue 12, 1201003(2022)
Research Progress in Spatiotemporal Characterization of Femtosecond Laser Fields
[1] Moulton P F. Spectroscopic and laser characteristics of Ti∶Al2O3[J]. Journal of the Optical Society of America B, 3, 125-133(1986).
[2] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti∶sapphire laser[J]. Optics Letters, 16, 42-44(1991).
[3] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).
[4] Hu M L, Song Y J, Liu B W et al. Development and advanced applications of femtosecond photonic crystal fiber laser technique[J]. Chinese Journal of Lasers, 36, 1660-1670(2009).
[5] Wang H L, Dong J, Liu H Y et al. Research progress of high-power ultrafast thin-disk laser technology (invited)[J]. Acta Photonica Sinica, 50, 0850208(2021).
[6] Liu Y Z, Qiao W C, Gao K et al. Development of high-power ultrafast fiber laser technology[J]. Chinese Journal of Lasers, 48, 1201003(2021).
[7] Yu B H, Hao Q, Zeng H P. 55 fs, 510 mW erbium-doped fiber femtosecond laser[J]. Acta Optica Sinica, 41, 1936001(2021).
[8] Cartlidge E. The light fantastic[J]. Science, 359, 382-385(2018).
[9] Leng Y X. Shanghai superintense ultrafast laser facility[J]. Chinese Journal of Lasers, 46, 0100001(2019).
[10] Zhou P, Leng J Y, Xiao H et al. High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 48, 2000001(2021).
[11] Müller M, Aleshire C, Klenke A et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 45, 3083-3086(2020).
[12] Gao C, Dai J Y, Li F Y et al. Homemade 10-kW ytterbium-doped aluminophosphosilicate fiber for tandem pumping[J]. Chinese Journal of Lasers, 47, 0315001(2020).
[13] Hassan M T, Luu T T, Moulet A et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons[J]. Nature, 530, 66-70(2016).
[14] Wei Z Y, Zhong S Y, He X K et al. Progresses and trends in attosecond optics[J]. Chinese Journal of Lasers, 48, 0501001(2021).
[15] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 81, 163-234(2009).
[16] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 81, 1229-1285(2009).
[17] Kneip S, McGuffey C, Martins J L et al. Bright spatially coherent synchrotron X-rays from a table-top source[J]. Nature Physics, 7, 737(2011).
[18] Phuoc K T, Corde S, Thaury C et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 6, 308-311(2012).
[19] Weiner A[M]. Ultrafast optics(2009).
[20] Zewail A H. Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel lecture)[J]. Angewandte Chemie International Edition, 39, 2586-2631(2000).
[21] Potter E D, Herek J L, Pedersen S et al. Femtosecond laser control of a chemical reaction[J]. Nature, 355, 66-68(1992).
[22] Reid G D, Wynne K. Ultrafast laser technology and spectroscopy[J]. Encyclopedia of Analytical Chemistry, 35, 13644-13670(2000).
[23] Fleming G[M]. Chemical applications of ultrafast spectroscopy(1986).
[24] Alfano R R[M]. The supercontinuum laser source: the ultimate white light(2016).
[25] Betzig E. Nobel lecture: single molecules, cells, and super-resolution optics[J]. Reviews of Modern Physics, 87, 1153-1168(2015).
[26] Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018).
[27] Schermelleh L, Ferrand A, Huser T et al. Super-resolution microscopy demystified[J]. Nature Cell Biology, 21, 72-84(2019).
[28] Weber H P. Method for pulsewidth measurement of ultrashort light pulses generated by phase-locked lasers using nonlinear optics[J]. Journal of Applied Physics, 38, 2231-2234(1967).
[29] Kane D J, Trebino R. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating[J]. IEEE Journal of Quantum Electronics, 29, 571-579(1993).
[30] Iaconis C, Walmsley I A. Spectral phase interferometry for direct electric field reconstruction of ultrashort optical pulses[J]. Optics Letters, 23, 792-794(1998).
[31] Akturk S, Gu X, Bowlan P et al. Spatio-temporal couplings in ultrashort laser pulses[J]. Journal of Optics, 12, 093001(2010).
[32] Chen J, Wan C H, Zhan Q W. Vectorial optical fields: recent advances and future prospects[J]. Science Bulletin, 63, 54-74(2018).
[33] Shen Y, Wang X, Xie Z et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 90(2019).
[34] Trebino R, Jafari R, Akturk S A et al. Highly reliable measurement of ultrashort laser pulses[J]. Journal of Applied Physics, 128, 171103(2020).
[35] Diels J[M]. Ultrashort laser pulse phenomena: fundamentals, techniques, and applications on a femtosecond time scale(2006).
[36] Stark H[M]. Image recovery: theory and application(2013).
[37] Delong K W, Fittinghoff D N, Trebino R et al. Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections[J]. Optics Letters, 19, 2152-2154(1994).
[38] Kane D J. Recent progress toward real-time measurement of ultrashort laser pulses[J]. IEEE Journal of Quantum Electronics, 35, 421-431(1999).
[39] Kane D J. Principal components generalized projections: a review[J]. Journal of the Optical Society of America B, 25, A120-A132(2008).
[40] Jafari R, Jones T, Trebino R. 100% reliable algorithm for second-harmonic-generation frequency-resolved optical gating[J]. Optics Express, 27, 2112-2124(2019).
[41] Dadap J I, Focht G B, Reitze D H et al. Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement[J]. Optics Letters, 16, 499-501(1991).
[42] Takagi Y, Kobayashi T, Yoshihara K et al. Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors[J]. Optics Letters, 17, 658-660(1992).
[43] Etchepare J, Grillon G, Orszag A. Third order autocorrelation study of amplified subpicosecond laser pulses[J]. IEEE Journal of Quantum Electronics, 19, 775-778(1983).
[44] Sarukura N, Watanabe M, Endoh A et al. Single-shot measurement of subpicosecond KrF pulse width by three-photon fluorescence of the XeF visible transition[J]. Optics Letters, 13, 996-998(1988).
[45] Trebino R[M]. Frequency-resolved optical gating: the measurement of ultrashort laser pulses(2000).
[46] Diels J C, Fontaine J J, Simoni F. Phase sensitive measurements of femtosecond laser pulses from a ring cavity[C], 348-355(1985).
[47] Diels J C, Fontaine J J, McMichael I C et al. Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy[J]. Applied Optics, 24, 1270-1282(1985).
[48] Kane D J, Trebino R. Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating[J]. Optics Letters, 18, 823-825(1993).
[49] Clement T S, Taylor A J, Kane D J. Single-shot measurement of the amplitude and phase of ultrashort laser pulses in the violet[J]. Optics Letters, 20, 70-72(1995).
[50] Sweetser J N, Fittinghoff D N, Trebino R. Transient-grating frequency-resolved optical gating[J]. Optics Letters, 22, 519-521(1997).
[51] Tsang T, Krumbügel M A, Delong K W et al. Frequency-resolved optical-gating measurements of ultrashort pulses using surface third-harmonic generation[J]. Optics Letters, 21, 1381-1383(1996).
[52] Mourou G. Nobel lecture: extreme light physics and application[J]. Reviews of Modern Physics, 91, 030501(2019).
[53] Brun A, Georges P, Le Saux G et al. Single-shot characterization of ultrashort light pulses[J]. Journal of Physics D: Applied Physics, 24, 1225-1233(1991).
[54] Taft G, Rundquist A, Murnane M M et al. Measurement of 10-fs laser pulses[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2, 575-585(1996).
[55] Stibenz G, Steinmeyer G. Interferometric frequency-resolved optical gating[J]. Optics Express, 13, 2617-2626(2005).
[56] Hyyti J, Escoto E, Steinmeyer G. Third-harmonic interferometric frequency-resolved optical gating[J]. Journal of the Optical Society of America B, 34, 2367-2375(2017).
[57] Hyyti J, Escoto E, Steinmeyer G. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution[J]. The Review of Scientific Instruments, 88, 103102(2017).
[58] Froehly C, Lacourt A, Viénot J C. Time impulse response and time frequency response of optical pupils: experimental confirmations and applications[J]. Nouvelle Revue d′Optique, 4, 183-196(1973).
[59] Fittinghoff D N, Bowie J L, Sweetser J N et al. Measurement of the intensity and phase of ultraweak, ultrashort laser pulses[J]. Optics Letters, 21, 884-886(1996).
[60] Lepetit L, Chériaux G, Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy[J]. Journal of the Optical Society of America B, 12, 2467-2474(1995).
[61] Oksenhendler T, Coudreau S, Forget N et al. Self-referenced spectral interferometry[J]. Applied Physics B, 99, 7-12(2010).
[62] Minkovski N, Petrov G I, Saltiel S M et al. Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration[J]. Journal of the Optical Society of America B, 21, 1659-1664(2004).
[63] Jullien A, Canova L, Albert O et al. Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase[J]. Applied Physics B, 87, 595-601(2007).
[64] Liu J, Jiang Y L, Kobayashi T et al. Self-referenced spectral interferometry based on self-diffraction effect[J]. Journal of the Optical Society of America B, 29, 29-34(2011).
[66] Stibenz G, Steinmeyer G. Optimizing spectral phase interferometry for direct electric-field reconstruction[J]. Review of Scientific Instruments, 77, 073105(2006).
[67] Baum P, Lochbrunner S, Riedle E. Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses[J]. Optics Letters, 29, 210-212(2004).
[68] Lozovoy V V, Pastirk I, Dantus M. Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation[J]. Optics Letters, 29, 775-777(2004).
[69] Miranda M, Arnold C L, Fordell T et al. Characterization of broadband few-cycle laser pulses with the d-scan technique[J]. Optics Express, 20, 18732-18743(2012).
[70] Miranda M, Fordell T, Arnold C et al. Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges[J]. Optics Express, 20, 688-697(2012).
[71] Meshulach D, Silberberg Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse[J]. Nature, 396, 239-242(1998).
[72] Walowicz K A, Pastirk I, Lozovoy V V et al. Multiphoton intrapulse interference. 1. control of multiphoton processes in condensed phases[J]. The Journal of Physical Chemistry A, 106, 9369-9373(2002).
[73] Xu B W, Gunn J M, Cruz J M D et al. Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses[J]. Journal of the Optical Society of America B, 23, 750-759(2006).
[74] Miranda M, Penedones J, Guo C et al. Fast iterative retrieval algorithm for ultrashort pulse characterization using dispersion scans[J]. Journal of the Optical Society of America B, 34, 190-197(2016).
[75] Fabris D, Holgado W, Silva F et al. Single-shot implementation of dispersion-scan for the characterization of ultrashort laser pulses[J]. Optics Express, 23, 32803-32808(2015).
[76] Bor Z, Horváth Z L. Distortion of femtosecond pulses in lenses. Wave optical description[J]. Optics Communications, 94, 249-258(1992).
[77] Bowlan P, Fuchs U, Trebino R et al. Measuring the spatiotemporal electric field of tightly focused ultrashort pulses with sub-micron spatial resolution[J]. Optics Express, 16, 13663-13675(2008).
[78] Bowlan P, Gabolde P, Trebino R. Directly measuring the spatio-temporal electric field of focusing ultrashort pulses[J]. Optics Express, 15, 10219-10230(2007).
[79] Horváth Z L, Bor Z. Focusing of femtosecond pulses having Gaussian spatial distribution[J]. Optics Communications, 100, 6-12(1993).
[80] Bourassin-Bouchet C, Stephens M, de Rossi S et al. Duration of ultrashort pulses in the presence of spatio-temporal coupling[J]. Optics Express, 19, 17357-17371(2011).
[81] Dorrer C. Spatiotemporal metrology of broadband optical pulses[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 3100216(2019).
[82] Gallmann L, Steinmeyer G, Sutter D H et al. Spatially resolved amplitude and phase characterization of femtosecond optical pulses[J]. Optics Letters, 26, 96-98(2001).
[83] Kosik E M, Radunsky A S, Walmsley I A et al. Interferometric technique for measuring broadband ultrashort pulses at the sampling limit[J]. Optics Letters, 30, 326-328(2005).
[84] Witting T, Austin D R, Walmsley I A. Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization[J]. Optics Letters, 34, 881-883(2009).
[85] Witting T, Austin D R, Barillot T et al. Self-referenced characterization of space-time couplings in near-single-cycle laser pulses[J]. Optics Letters, 41, 2382-2385(2016).
[86] Witting T, Weber S J, Tisch J W G et al. Spatio-temporal characterization of mid-infrared laser pulses with spatially encoded spectral shearing interferometry[J]. Optics Express, 20, 27974-27980(2012).
[87] Austin D R, Witting T, Weber S J et al. Spatio-temporal characterization of intense few-cycle 2 μm pulses[J]. Optics Express, 24, 24786-24798(2016).
[88] Dorrer C, Walmsley I A. Simple linear technique for the measurement of space-time coupling in ultrashort optical pulses[J]. Optics Letters, 27, 1947-1949(2002).
[89] Dorrer C, Kosik E M, Walmsley I A. Spatio-temporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing interferometry[J]. Applied Physics B, 74, s209-s217(2002).
[90] Dorrer C, Kosik E M, Walmsley I A. Direct space time-characterization of the electric fields of ultrashort optical pulses[J]. Optics Letters, 27, 548-550(2002).
[91] Jolly S W, Gobert O, Quéré F. Spatio-temporal characterization of ultrashort laser beams: a tutorial[J]. Journal of Optics, 22, 103501(2020).
[92] Oksenhendler T, Bizouard P, Albert O et al. High dynamic, high resolution and wide range single shot temporal pulse contrast measurement[J]. Optics Express, 25, 12588-12600(2017).
[93] Bragheri F, Faccio D, Bonaretti F et al. Complete retrieval of the field of ultrashort optical pulses using the angle-frequency spectrum[J]. Optics Letters, 33, 2952-2954(2008).
[94] Eilenberger F, Brown A, Minardi S et al. Imaging cross-correlation FROG: measuring ultrashort, complex, spatiotemporal fields[J]. Optics Express, 21, 25968-25976(2013).
[95] Mehta N, Yang C, Xu Y et al. Characterization of the spatiotemporal evolution of ultrashort optical pulses using FROG holography[J]. Optics Express, 22, 11099-11106(2014).
[96] Chang C I[M]. Hyperspectral imaging: techniques for spectral detection and classification(2003).
[97] Bowlan P, Gabolde P, Coughlan M A et al. Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution[J]. Journal of the Optical Society of America B, 25, A81-A92(2008).
[98] Alonso B, Sola Í J, Varela Ó et al. Spatiotemporal amplitude-and-phase reconstruction by Fourier-transform of interference spectra of high-complex-beams[J]. Journal of the Optical Society of America B, 27, 933-940(2010).
[99] Gallet V, Kahaly S, Gobert O et al. Dual spectral-band interferometry for spatio-temporal characterization of high-power femtosecond lasers[J]. Optics Letters, 39, 4687-4690(2014).
[100] Gallet V, Pariente G, Kahaly S et al. Spatio-temporal characterization techniques of high-power femtosecond laser chains[J]. Proceedings of SPIE, 8972, 89720S(2014).
[101] Hagen N A, Kudenov M W. Review of snapshot spectral imaging technologies[J]. Optical Engineering, 52, 090901(2013).
[102] Gabolde P, Trebino R. Single-shot measurement of the full spatio-temporal field of ultrashort pulses with multi-spectral digital holography[J]. Optics Express, 14, 11460-11467(2006).
[103] Grace E, Ma T, Guang Z et al. Single-shot complete spatiotemporal measurement of terawatt laser pulses[J]. Journal of Optics, 23, 075505(2021).
[104] O’Shea P, Kimmel M, Gu X et al. Highly simplified device for ultrashort-pulse measurement[J]. Optics Letters, 26, 932-934(2001).
[105] Guang Z, Rhodes M, Trebino R. Measurement of the ultrafast lighthouse effect using a complete spatiotemporal pulse-characterization technique[J]. Journal of the Optical Society of America B, 33, 1955-1962(2016).
[106] Yi Y J, Xu Y M, Zhu P et al. Three-dimensional spatiotemporal self-referenced characterization of ultrashort pulses using the coherent diffraction imaging technique[J]. Proceedings of SPIE, 11781, 117811P(2021).
[107] Cousin S L, Bueno J M, Forget N et al. Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann-Shack wavefront sensor[J]. Optics Letters, 37, 3291-3293(2012).
[108] Hauri C P, Biegert J, Keller U et al. Validity of wave-front reconstruction and propagation of ultrabroadband pulses measured with a Hartmann-Shack sensor[J]. Optics Letters, 30, 1563-1565(2005).
[109] Kueny E, Meier J, Levecq X et al. Wavefront analysis of a white-light supercontinuum[J]. Optics Express, 26, 31299-31306(2018).
[110] Kim Y G, Kim J I, Yoon J W et al. Single-shot spatiotemporal characterization of a multi-PW laser using a multispectral wavefront sensing method[J]. Optics Express, 29, 19506-19514(2021).
[111] Alonso B, Miranda M, Sola Í J et al. Spatiotemporal characterization of few-cycle laser pulses[J]. Optics Express, 20, 17880-17893(2012).
[112] Boniface A, Gusachenko I, Dholakia K et al. Rapid broadband characterization of scattering medium using hyperspectral imaging[J]. Optica, 6, 274-279(2019).
[113] Miranda M, Kotur M, Rudawski P et al. Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry[J]. Optics Letters, 39, 5142-5145(2014).
[114] Pariente G, Gallet V, Borot A et al. Space-time characterization of ultra-intense femtosecond laser beams[J]. Nature Photonics, 10, 547-553(2016).
[115] Borot A, Quéré F. Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach[J]. Optics Express, 26, 26444-26461(2018).
[116] Zuo C, Li J J, Sun J S et al. Transport of intensity equation: a tutorial[J]. Optics and Lasers in Engineering, 135, 106187(2020).
[117] Börzsönyi A, Mangin-Thro L, Cheriaux G et al. Two-dimensional single-shot measurement of angular dispersion for compressor alignment[J]. Optics Letters, 38, 410-412(2013).
[118] Jolly S W, Gobert O, Jeandet A et al. Controlling the velocity of a femtosecond laser pulse using refractive lenses[J]. Optics Express, 28, 4888-4897(2020).
[119] Kahaly S, Monchocé S, Gallet V et al. Investigation of amplitude spatio-temporal couplings at the focus of a 100 TW-25 fs laser[J]. Applied Physics Letters, 104, 054103(2014).
[120] Bahk S W, Dorrer C, Bromage J. Chromatic diversity: a new approach for characterizing spatiotemporal coupling of ultrashort pulses[J]. Optics Express, 26, 8767-8777(2018).
[121] Bor Z, Gogolak Z, Szabo G. Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry[J]. Optics Letters, 14, 862-864(1989).
[122] Wu F X, Xu Y, Li Z Y et al. A novel measurement scheme for the radial group delay of large-aperture ultra-short laser pulses[J]. Optics Communications, 367, 259-263(2016).
[123] Sacks Z, Mourou G, Danielius R. Adjusting pulse-front tilt and pulse duration by use of a single-shot autocorrelator[J]. Optics Letters, 26, 462-464(2001).
[124] Li Z Y, Miyanaga N, Kawanaka J. Single-shot real-time detection technique for pulse-front tilt and curvature of femtosecond pulsed beams with multiple-slit spatiotemporal interferometry[J]. Optics Letters, 43, 3156-3159(2018).
[125] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).
[126] Wagadarikar A, John R, Willett R et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 47, B44-B51(2008).
[127] Gao L, Liang J, Li C et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 516, 74-77(2014).
[128] Liang J, Zhu L, Wang L V. Single-shot real-time femtosecond imaging of temporal focusing[J]. Light: Science & Applications, 7, 42(2018).
[129] Yang C S, Cao F Y, Qi D L et al. Hyperspectrally compressed ultrafast photography[J]. Physical Review Letters, 124, 023902(2020).
[130] Tang H C, Men T et al. Single-shot compressed optical field topography, submitted.
[131] Tokunaga E, Terasaki A, Kobayashi T. Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy[J]. Optics Letters, 17, 1131-1133(1992).
[132] Geindre J P, Audebert P, Rebibo S et al. Single-shot spectral interferometry with chirped pulses[J]. Optics Letters, 26, 1612-1614(2001).
[133] le Blanc S P, Gaul E W, Matlis N H et al. Single-shot measurement of temporal phase shifts by frequency-domain holography[J]. Optics Letters, 25, 764-766(2000).
[134] Marquès J, Dorchies F, Audebert P et al. Frequency increase and damping of nonlinear electron plasma oscillations in cylindrical symmetry[J]. Physical Review Letters, 78, 3463-3466(1997).
[135] Geindre J P, Audebert P, Rousse A et al. Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma[J]. Optics Letters, 19, 1997-1999(1994).
[136] Siders C W, Sp L B, Fisher D et al. Laser Wakefield excitation and measurement by femtosecond longitudinal interferometry[J]. Physical Review Letters, 76, 3570-3573(1996).
[137] Marquès J R, Geindre J P, Amiranoff F et al. Temporal and spatial measurements of the electron density perturbation produced in the wake of an ultrashort laser pulse[J]. Physical Review Letters, 76, 3566-3569(1996).
[138] Evans R, BadgerA D, Falliès F et al. Time- and space-resolved optical probing of femtosecond-laser-driven shock waves in aluminum[J]. Physical Review Letters, 77, 3359-3362(1996).
[139] Benuzzi-Mounaix A, Koenig M, BoudenneJ M et al. Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments[J]. Physical Review E, 60, R2488-R2491(1999).
[140] Cao X D, Zheng L, Meyerhofer D D. Measurement of group-velocity walk-off of short pulses in nonlinear crystals: a novel method[J]. Optics Letters, 20, 392(1995).
[141] Wilson P T, Jiang Y, Aktsipetrov O A et al. Frequency-domain interferometric second-harmonic spectroscopy[J]. Optics Letters, 24, 496-498(1999).
[142] Abdollahpour D, Papazoglou D G, Tzortzakis S. Four-dimensional visualization of single and multiple laser filaments using in-line holographic microscopy[J]. Physical Review A, 84, 053809(2011).
[143] Seo M, Boubanga-Tombet S, Yoo J et al. Ultrafast optical wide field microscopy[J]. Optics Express, 21, 8763-8772(2013).
[144] Ni G X, Wang L, Goldflam M D et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene[J]. Nature Photonics, 10, 244-247(2016).
[145] Domke M, Rapp S, Schmidt M et al. Ultrafast pump-probe microscopy with high temporal dynamic range[J]. Optics Express, 20, 10330-10338(2012).
[146] Lemke C, Leißner T, Klick A et al. Measurement of surface plasmon autocorrelation functions[J]. Optics Express, 21, 27392-27401(2013).
[147] Nakagawa K, Iwasaki A, Oishi Y et al. Sequentially timed all-optical mapping photography (STAMP)[J]. Nature Photonics, 8, 695-700(2014).
[148] Suzuki T, Isa F, Fujii L et al. Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering[J]. Optics Express, 23, 30512-30522(2015).
[149] Suzuki T, Hida R, Yamaguchi Y et al. Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5 with a sub-picosecond resolution[J]. Applied Physics Express, 10, 092502(2017).
[150] Zeng X K, Zheng S Q, Cai Y et al. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification[J]. Advanced Photonics, 2, 056002(2020).
[151] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 458, 1145-1149(2009).
[152] Matlis N H, Axley A, Leemans W P. Single-shot ultrafast tomographic imaging by spectral multiplexing[J]. Nature Communications, 3, 1111(2012).
[153] Nemoto H, Suzuki T, Yamaguchi Y et al. Single-shot ultrafast burst imaging by spectrally sweeping pulse train with 100-ps interval[C], Th1B. 3(2018).
[154] Suzuki T, Isa F, Fujii L et al. All-optical single-shot ultrafast 2D-burst imaging using a linearly frequency chirped pulse[C](2015).
[155] Chini M, Zhao K, Chang Z. The generation, characterization and applications of broadband isolated attosecond pulses[J]. Nature Photonics, 8, 178-186(2014).
[156] James S, David E[M]. Vacuum ultraviolet spectroscopy(2000).
[157] Kosuge A, Sekikawa T, Zhou X et al. Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet[J]. Physical Review Letters, 97, 263901(2006).
[158] David A[M]. Soft X-rays and extreme ultraviolet radiation: principles and applications(2000).
[159] Orfanos I, Makos I, Liontos I et al. Attosecond pulse metrology[J]. APL Photonics, 4, 080901(2019).
[160] Tzallas P, Charalambidis D, Papadogiannis N A et al. Direct observation of attosecond light bunching[J]. Nature, 426, 267-271(2003).
[161] Hörlein R, Nomura Y, Tzallas P et al. Temporal characterization of attosecond pulses emitted from solid-density plasmas[J]. New Journal of Physics, 12, 043020(2010).
[162] Nomura Y, Hörlein R, Tzallas P et al. Attosecond phase locking of harmonics emitted from laser-produced plasmas[J]. Nature Physics, 5, 124-128(2009).
[163] Sekikawa T, Kosuge A, Kanai T et al. Nonlinear optics in the extreme ultraviolet[J]. Nature, 432, 605-608(2004).
[164] Paul P M, Toma E S, Breger P et al. Observation of a train of attosecond pulses from high harmonic generation[J]. Science, 292, 1689-1692(2001).
[165] Itatani J, Quéré F, Yudin G L et al. Attosecond streak camera[J]. Physical Review Letters, 88, 173903(2002).
[166] Wang X L, Xu P, Li J et al. Isolated attosecond pulse with 159 as duration measured by home built attosecond streaking camera[J]. Chinese Journal of Lasers, 47, 0415002(2020).
[167] Sansone G, Benedetti E, Calegari F et al. Isolated single-cycle attosecond pulses[J]. Science, 314, 443-446(2006).
[168] Mairesse Y, Quéré F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts[J]. Physical Review A, 71, 011401(2005).
[169] Lewenstein M, Salières P, L’Huillier A. Phase of the atomic polarization in high-order harmonic generation[J]. Physical Review A, 52, 4747-4754(1995).
[170] Dudovich N, Smirnova O, Levesque J et al. Measuring and controlling the birth of attosecond XUV pulses[J]. Nature Physics, 2, 781-786(2006).
[171] Kim K T, Zhang C, Shiner A D et al. Manipulation of quantum paths for space-time characterization of attosecond pulses[J]. Nature Physics, 9, 159-163(2013).
[172] Chopineau L, Denoeud A, Leblanc A et al. Spatio-temporal characterization of attosecond pulses from plasma mirrors[J]. Nature Physics, 17, 968-973(2021).
[173] Spanner M, Bertrand J B, Villeneuve D M. In situ attosecond pulse characterization techniques to measure the electromagnetic phase[J]. Physical Review A, 94, 023825(2016).
Get Citation
Copy Citation Text
Zhengyan Li, Ting Men, Weiqi Tang, Yaodan Hu, Haocheng Tang, Mingdong Yan. Research Progress in Spatiotemporal Characterization of Femtosecond Laser Fields[J]. Chinese Journal of Lasers, 2022, 49(12): 1201003
Category: laser devices and laser physics
Received: Jan. 10, 2022
Accepted: Apr. 24, 2022
Published Online: Jun. 13, 2022
The Author Email: Zhengyan Li (zhengyanli@hust.edu.cn)