Journal of Synthetic Crystals, Volume. 52, Issue 2, 183(2023)

Research Progress on the Growth of GaN Single Crystal by Sodium Flux Method

WANG Benfa1、*, WANG Shouzhi1, WANG Guodong1, YU Jiaoxian2, LIU Lei1, LI Qiubo1, WU Yuzhu1, XU Xiangang1, and ZHANG Lei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(29)

    [1] [1] PEARTON S J, REN F, ZHANG A P, et al. Fabrication and performance of GaN electronic devices[J]. Materials Science and Engineering: R: Reports, 2000, 30(3/4/5/6): 55-212.

    [2] [2] EFTHYMIOU L, LONGOBARDI G, CAMUSO G, et al. On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices[J]. Applied Physics Letters, 2017, 110(12): 123502.

    [3] [3] ANDERSON T J, CHOWDHURY S, AKTAS O, et al. GaN power devices-current status and future directions[J]. The Electrochemical Society Interface, 2018, 27(4): 43-47.

    [4] [4] NAKAMURA S. First Ⅲ-Ⅴ-nitride-based violet laser diodes[J]. Journal of Crystal Growth, 1997, 170(1/2/3/4): 11-15.

    [5] [5] JOHNSON M A L, HUGHES W C, ROWLAND W H Jr, et al. Growth of GaN, InGaN, and AlGaN films and quantum well structures by molecular beam epitaxy[J]. Journal of Crystal Growth, 1997, 175/176: 72-78.

    [6] [6] MELTON W A, PANKOVE J I. GaN growth on sapphire[J]. Journal of Crystal Growth, 1997, 178(1/2): 168-173.

    [7] [7] DUPUIS R D. Epitaxial growth of Ⅲ-Ⅴ nitride semiconductors by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 1997, 178(1/2): 56-73.

    [8] [8] NAKAMURA S, MUKAI T, SENOH M. High-power GaN P-N junction blue-light-emitting diodes[J]. Japanese Journal of Applied Physics, 1991, 30(12A): L1998.

    [9] [9] IWAYA M, KASUGAI H, KAWASHIMA T, et al. Improvement in light extraction efficiency in group Ⅲ nitride-based light-emitting diodes using moth-eye structure[J]. Thin Solid Films, 2006, 515(2): 768-770.

    [10] [10] SAITO W, DOMON T, OMURA I, et al. Demonstration of 13.56-MHz class-E amplifier using a high-voltage GaN power-HEMT[J]. IEEE Electron Device Letters, 2006, 27(5): 326-328.

    [11] [11] BOCKOWSKI M. High nitrogen pressure solution growth of GaN[J]. Japanese Journal of Applied Physics, 2014, 53(10): 100203.

    [13] [13] KAWAMURA F, MORISHITA M, TANPO M, et al. Effect of carbon additive on increases in the growth rate of 2 in GaN single crystals in the Na flux method[J]. Journal of Crystal Growth, 2008, 310(17): 3946-3949.

    [16] [16] YAMANE H, KINNO D, SHIMADA M, et al. Crystal growth of GaN from Na-Ga melt in BN containers[J]. Journal of the Ceramic Society of Japan, 1999, 107(1250): 925-929.

    [17] [17] AOKI M, YAMANE H, SHIMADA M, et al. Growth of GaN single crystals from a Na-Ga melt at 750 ℃ and 5 MPa of N2[J]. Journal of Crystal Growth, 2000, 218(1): 7-12.

    [18] [18] AOKI M, YAMANE H, SHIMADA M, et al. GaN single crystal growth using high-purity Na as a flux[J]. Journal of Crystal Growth, 2002, 242(1/2): 70-76.

    [19] [19] IWAHASHI T, KITAOKA Y, KAWAMURA F, et al. Liquid phase epitaxy growth of m-plane GaN substrate using the Na flux method[J]. Japanese Journal of Applied Physics, 2007, 46(10): L227-L229.

    [20] [20] AOKI M, YAMANE H, SHIMADA M, et al. Conditions for seeded growth of GaN crystals by the Na flux method[J]. Materials Letters, 2002, 56(5): 660-664.

    [21] [21] SI Z W, LIU Z L, HU Y Q, et al. Growth behavior and stress distribution of bulk GaN grown by Na-flux with HVPE GaN seed under near-thermodynamic equilibrium[J]. Applied Surface Science, 2022, 578: 152073.

    [23] [23] LIU Z L, REN G Q, SHI L, et al. Effect of carbon types on the generation and morphology of GaN polycrystals grown using the Na flux method[J]. CrystEngComm, 2015, 17(5): 1030-1036.

    [24] [24] MASUMOTO K, SOMENO T, MURAKAMI K, et al. Effect of additives on liquid phase epitaxy growth of non-polar GaN single crystals using Na flux method[J]. Physica Status Solidi C, 2012, 9(3/4): 457-460.

    [25] [25] IWAHASHI T, KITAOKA Y, KAWAHARA M, et al. Fabrication of a-plane GaN substrate using the Sr-Na flux liquid phase epitaxy technique[J]. Japanese Journal of Applied Physics, 2007, 46(4): L103-L106.

    [26] [26] BAO H Q, LI H, WANG G, et al. Exploration of Ba3N2 flux for GaN single-crystal growth[J]. Journal of Crystal Growth, 2008, 310(12): 2955-2959.

    [27] [27] AOKI M, YAMANE H, SHIMADA M, et al. Single crystal growth of GaN by the temperature gradient Na flux method[J]. Journal of Crystal Growth, 2004, 266(4): 461-466.

    [28] [28] GEJO R, KAWAMURA F, KAWAHARA M, et al. Effect of thermal convection on liquid phase epitaxy of GaN by Na flux method[J]. Japanese Journal of Applied Physics, 2007, 46(12): 7689-7692.

    [29] [29] IMADE M, MURAKAMI K, MATSUO D, et al. Centimeter-sized bulk GaN single crystals grown by the Na-flux method with a necking technique[J]. Crystal Growth & Design, 2012, 12(7): 3799-3805.

    [30] [30] IMADE M, IMANISHI M, TODOROKI Y, et al. Fabrication of low-curvature 2 in. GaN wafers by Na-flux coalescence growth technique[J]. Applied Physics Express, 2014, 7(3): 035503.

    [31] [31] MORI Y, IMANISHI M, MURAKAMI K, et al. Recent progress of Na-flux method for GaN crystal growth[J]. Japanese Journal of Applied Physics, 2019, 58(SC): SC0803.

    [32] [32] YAMADA T, IMANISHI M, MURAKAMI K, et al. Fabrication of a 1.5-inch freestanding GaN substrate by selective dissolution of sapphire using Li after the Na-flux growth[J]. Journal of Crystal Growth, 2020, 533: 125462.

    Tools

    Get Citation

    Copy Citation Text

    WANG Benfa, WANG Shouzhi, WANG Guodong, YU Jiaoxian, LIU Lei, LI Qiubo, WU Yuzhu, XU Xiangang, ZHANG Lei. Research Progress on the Growth of GaN Single Crystal by Sodium Flux Method[J]. Journal of Synthetic Crystals, 2023, 52(2): 183

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 14, 2022

    Accepted: --

    Published Online: Mar. 18, 2023

    The Author Email: Benfa WANG (a3107128036@163.com)

    DOI:

    CSTR:32186.14.

    Topics