Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 11, 1573(2021)
DCN-Based unsupervised domain adaptive person re-identification method
[1] [1] YE M, SHEN J B, LIN G J, et al. Deep learning for person re-identification: a survey and outlook [J]. arXiv: 2001.04193V1.
[6] [6] DENG W J, ZHENG L, YE Q X, et al. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification [C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 994-1003.
[7] [7] WEI L H, ZHANG S L, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification [C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 79-88.
[8] [8] ZHONG Z, ZHENG L, ZHENG Z D, et al. CamStyle: a novel data augmentation method for person re-identification [J]. IEEE Transactions on Image Processing, 2019, 28(3): 1176-1190.
[9] [9] FU Y, WEI Y C, WANG G S, et al. Self-similarity grouping: a simple unsupervised cross domain adaptation approach for person re-identification [C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 6112-6121.
[10] [10] SONG L C, WANG C, ZHANG L F, et al. Unsupervised domain adaptive re-identification: theory and practice [J]. Pattern Recognition, 2020, 102: 107173.
[11] [11] ZHAI Y P, LU S J, YE Q X, et al. Ad-cluster: augmented discriminative clustering for domain adaptive person re-identification [C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9021-9030.
[12] [12] YANG F X, LI K, ZHONG Z, et al. Asymmetric co-teaching for unsupervised cross-domain person re-identification [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12597-12604.
[13] [13] WANG D K, ZHANG S L. Unsupervised person re-identification via multi-label classification [C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10981-10990.
[14] [14] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks [C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 764-773.
[15] [15] ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results [C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9308-9316.
[18] [18] HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification [J]. arXiv preprint arXiv: 1703.07737, 2017.
[19] [19] LIN S, LI H L, LI C T, et al. Multi-task mid-level feature alignment network for unsupervised cross-dataset person re-identification [J]. arXiv preprint arXiv: 1807.01440, 2018.
[20] [20] CHEN Y B, ZHU X T, GONG S G. Instance-guided context rendering for cross-domain person re-identification [C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 232-242.
[21] [21] ZHANG X Y, CAO J W, SHEN C H, et al. Self-training with progressive augmentation for unsupervised cross-domain person re-identification [C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 8222-8231.
[22] [22] ZHONG Z, ZHENG L, LUO Z M, et al. Learning to adapt invariance in memory for person re-identification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(8): 2723-2738.
[23] [23] JIN X, LAN C L, ZENG W J, et al. Style normalization and restitution for generalizable person re-identification [C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 3143-3152.
[24] [24] HUANG Y R, PENG P X, JIN Y, et al. Domain adaptive attention model for unsupervised cross-domain person re-identification [J]. arXiv preprint arXiv: 1905.10529, 2019.
Get Citation
Copy Citation Text
YANG Hai-lun, WANG Jin-cong, REN Hong-e, TAO Rui. DCN-Based unsupervised domain adaptive person re-identification method[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(11): 1573
Category:
Received: Apr. 12, 2021
Accepted: --
Published Online: Dec. 1, 2021
The Author Email: YANG Hai-lun (yanghailun1998@163.com)