International Journal of Extreme Manufacturing, Volume. 7, Issue 3, 35101(2025)

Boosting non-oxide interfacial Co/SiO2 hybrid bonding by selective surface activation

Qi Xiaoyun, Zhou Shicheng, Ma Yan, Suga Tadatomo, and Wang Chenxi
References(67)

[1] [1] Netzband C, Ryan K, Mimura Y, Ilseok S, Aizawa H, Ip N, Chen X M, Fukushima H and Tan S 2023 0.5μm pitch next generation hybrid bonding with high alignment accuracy for 3D integrationProc. 73rd Electronic Components and Technology Conf. (ECTC)(IEEE) pp 1100–4

[2] [2] Agarwal R, Cheng P, Shah P, Wilkerson B, Swaminathan R, Wuu J and Mandalapu C 2022 3D packaging for heterogeneous integrationProc. 72nd Electronic Components and Technology Conf. (ECTC)(IEEE) pp 1103–7

[3] [3] Wang Z J, Song Y X, Zhang G B, Luo Q, Xu K, Gao D W, Yu B, Loke D, Zhong S and Zhang Y S 2024 Advances of embedded resistive random access memory in industrial manufacturing and its potential applicationsInt. J. Extrem. Manuf.6032006

[4] [4] Elsherbini A, Liff S, Swan J, Jun K, Tiagaraj S and Pasdast G 2021 Hybrid bonding interconnect for advanced heterogeneously integrated processorsProc. 71st Electronic Components and Technology Conf. (ECTC)(IEEE) pp 1014–9

[5] [5] Cheng Y Q, Guo X C and Pavlidis V F 2022 Emerging monolithic 3D integration: opportunities and challenges from the computer system perspectiveIntegration8597–107

[6] [6] Chau R 2019 Process and packaging innovations for Moore's law continuation and beyondProc. Int. Electron Devices Meeting (IEDM)(IEEE) pp 1.1.1–6

[7] [7] Sinha Set al2020 A high-density logic-on-logic 3DIC design using face-to-face hybrid wafer-bonding on 12nm FinFET processProc. Int. Electron Devices Meeting (IEDM)(IEEE) pp 15.1.1–4

[8] [8] Elsherbini Aet al2021 Enabling hybrid bonding on intel processProc. Int. Electron Devices Meeting (IEDM)(IEEE) pp 34.3.1–4

[9] [9] Jose B S, Sandstrom C, Talain E, Kellar J, Olson T, Melgo M M, Gacho R and Kim B C 2023 Integrating chiplets using chips first ultra-high-density fan-out with maskless laser direct imaging and adaptive patterning for high performance computingProc. 73rd Electronic Components and Technology Conf. (ECTC)(IEEE) pp 271–6

[10] [10] Chew S A, De Vos J and Beyne E 2024 Wafer-to-wafer hybrid bonding at 400-nm interconnect pitchNat. Rev. Electr. Eng.171–72

[11] [11] Wang L, Fountain G, Lee B, Gao G L, Uzoh C, McGrath S, Enquist P, Arkalgud S and Mirkarimi L 2017 Direct bond interconnect (DBI®) for fine-pitch bonding in 3D and 2.5D integrated circuitsProc. Pan Pacific Microelectronics Symp. (Pan Pacific)(IEEE) pp 1–6

[12] [12] Lin X Wet al2021 Heterogeneous integration enabled by the state-of-the-art 3DIC and CMOS technologies: design, cost, and modelingProc. Int. Electron Devices Meeting (IEDM)(IEEE) pp 3.4.1–4

[13] [13] Suarez Berru J J, Nicolas S, Bresson N, Assous M and Borel S 2023 Demonstration of a wafer level face-to-back (F2B) fine pitch Cu-Cu hybrid bonding with high density TSV for 3D integration applicationsProc. 73rd Electronic Components and Technology Conf. (ECTC)(IEEE) pp 97–102

[14] [14] Yang C-C, Baumann F, Wang P-C, Lee S, Ma P, AuBuchon J and Edelstein D 2011 Characterization of copper electromigration dependence on selective chemical vapor deposited cobalt capping layer thicknessIEEE Electron. Device Lett.32560–2

[15] [15] Gall D, Jog A and Zhou T J 2020 Narrow interconnects: the most conductive metalsProc. Int. Electron Devices Meeting (IEDM)(IEEE) pp 32.3.1–4

[16] [16] Saraswat K C 2020 Silicon compatible optical interconnect and monolithic 3-D integrationProc. Int. Electron Devices Meeting (IEDM)(IEEE) pp 32.7.1–4

[17] [17] Markussen T, Aboud S, Blom A, Lanzillo N A, Gunst T, Cobb J, Philip T M and Robison R R 2020 Grain boundary scattering in Ru and Cu interconnectsProc. Int. Interconnect Technology Conf. (IITC)(IEEE) pp 76–78

[18] [18] Beilliard Y, Moreau S, Di Cioccio L, Coudrain P, Romano G, Nowodzinski A, Aussenac F, Jouneau P H, Rolland E and Signamarcheix T 2014 Advances toward reliable high density Cu-Cu interconnects by Cu-SiO2 direct hybrid bondingProc. Int. 3D Systems Integration Conf. (3DIC)(IEEE) pp 1–8

[19] [19] Mirkarimi Let al2022 The influence of Cu microstructure on thermal budget in hybrid bondingProc. 72nd Electronic Components and Technology Conf. (ECTC)(IEEE) pp 162–7

[20] [20] Hu H-W and Chen K-N 2021 Development of low temperature Cu-Cu bonding and hybrid bonding for three-dimensional integrated circuits (3D IC)Microelectron. Reliab.127114412

[21] [21] Jeong M S, Park S W, Kim Y J, Kim J H, Hong S K, Kim S E and Park J K 2024 Unraveling diffusion behavior in Cu-to-Cu direct bonding with metal passivation layersSci. Rep.146665

[22] [22] Vyas A A, Zhou C J and Yang C Y 2018 On-chip interconnect conductor materials for end-of-roadmap technology nodesIEEE Trans. Nanotechnol.174–10

[23] [23] Croes Ket al2018 Interconnect metals beyond copper: reliability challenges and opportunitiesProc. Int. Electron Devices Meeting (IEDM)(IEEE) pp 5.3.1–4

[24] [24] Yang C-C, Flaitz P, Wang P-C, Chen F and Edelstein D 2010 Characterization of selectively deposited cobalt capping layers: selectivity and electromigration resistanceIEEE Electron. Device Lett.31728–30

[25] [25] Hong Z-Jet al2023 Low-temperature hybrid bonding with high electromigration resistance scheme for application on heterogeneous integrationAppl. Surf. Sci.610155470

[26] [26] Li M J, Breeden M, Wang V, Hollin J, Linn N M K, Winter C H, Kummel A and Bakir M S 2020 Cu–Cu bonding using selective cobalt atomic layer deposition for 2.5-D/3-D chip integration technologiesIEEE Trans. Compon. Packag. Manuf. Technol.102125–8

[27] [27] Liu D M, Mei K C, Hu H W, Tsai Y C, Cheng H C and Chen K N 2022 Investigation of low temperature Co-Co direct bonding and Co-passivated Cu-Cu direct bondingProc. 72nd Electronic Components and Technology Conf. (ECTC)(IEEE) pp 187–93

[28] [28] Wang P, Shao Y-H, Ni Z-H, Hu C-F and Qu X-P 2022 Low-temperature copper–copper quasi-direct bonding with cobalt passivation layerAIP Adv.12115101

[29] [29] Tong Q-Y, Fountain G and Enquist P 2006 Room temperature SiO2/SiO2 covalent bondingAppl. Phys. Lett.89042110

[30] [30] Suni T, Henttinen K, Suni I and Mkinen J 2002 Effects of plasma activation on hydrophilic bonding of Si and SiO2J. Electrochem. Soc.149G348

[31] [31] He R, Fujino M, Akaike M, Sakai T, Sakuyama S and Suga T 2017 Combined surface activated bonding using H-containing HCOOH vapor treatment for Cu/Adhesive hybrid bonding at below 200 °CAppl. Surf. Sci.414163–70

[32] [32] Seo H K, Eunkyung Kim S, Kim G, Park H S and Park Y B 2020 Effects of two-step plasma treatment on Cu and SiO2 surfaces for 3D bonding applicationsProc. 70th Electronic Components and Technology Conf. (ECTC)(IEEE) pp 1677–83

[33] [33] Kang Q S, Wang C X, Zhou S C, Li G, Lu T, Tian Y H and He P 2021 Low-temperature Co-hydroxylated Cu/SiO2 hybrid bonding strategy for a memory-centric chip architectureACS Appl. Mater. Interfaces1338866–76

[34] [34] Kang Q S, Li G, Li Z D, Tian Y H and Wang C X 2023 Surface co-hydrophilization via ammonia inorganic strategy for low-temperature Cu/SiO2 hybrid bondingJ. Mater. Sci. Technol.149161–6

[35] [35] Tabata T, Sanchez L, Larrey V, Fournel F and Moriceau H 2020 SiO2-SiO2 die-to-wafer direct bonding interface weakeningMicroelectron. Reliab.107113589

[36] [36] Miccoli I, Edler F, Pfnr H and Tegenkamp C 2015 The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systemsJ. Phys.: Condens. Matter27223201

[37] [37] Lin L, Jacobs R, Ma T Y, Chen D Z, Booske J and Morgan D 2023 Work function: fundamentals, measurement, calculation, engineering, and applicationsPhys. Rev. Appl.19037001

[38] [38] Huhtamki T, Tian X L, Korhonen J T and Ras R H A 2018 Surface-wetting characterization using contact-angle measurementsNat. Protocols131521–38

[39] [39] Han B J, Wang X M, Zheng J Z, Liang S, Xiao K, Yu J L, Qian Z and Huang X 2019 Determination of surface energy parameters of hydrophilic porous membranes via a corrected contact angle approachLangmuir3515009–16

[40] [40] Kresse G and Furthmller J 1996 Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis setPhys. Rev.B5411169–86

[41] [41] Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave methodPhys. Rev.B591758–75

[42] [42] Seeman J I 1986 The Curtin-Hammett principle and the Winstein-Holness equation: new definition and recent extensions to classical conceptsJ. Chem. Educ.6342

[43] [43] Parsons G N and Clark R D 2020 Area-selective deposition: fundamentals, applications, and future outlookChem. Mater.324920–53

[44] [44] Khumaini K, Hidayat R, Mayangsari T R, Chowdhury T, Kim H-L, Lee S-I and Lee W-J 2022 Density functional theory study on the selective capping of cobalt on copper interconnectAppl. Surf. Sci.585152750

[45] [45] Shieh S R and Duffy T S 2002 Raman spectroscopy of Co (OH)2 at high pressures: implications for amorphization and hydrogen repulsionPhys. Rev.B66134301

[46] [46] Wu T Zet al2021 Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidationNat. Commun.123634

[47] [47] Zhang R Ret al2023 Tracking the role of defect types in Co3O4 structural evolution and active motifs during oxygen evolution reactionJ. Am. Chem. Soc.1452271–81

[48] [48] ahin , Tapan , zmutlu E N and Veenhof R 2010 Penning transfer in argon-based gas mixturesJ. Inst.505002

[49] [49] Gao Y B, Zhou M, Hu E J, Zhao Y, Yin G Y and Huang Z H 2024 Hydrogen generation by dielectric barrier discharge plasma assisted ammonia decompositionEnergy Convers. Manage.306118271

[50] [50] Koenig J L, Shih P T K and Lagally P 1975 Raman and infrared spectroscopic studies of the reactions of silica and glass surfacesMater. Sci. Eng.20127–35

[51] [51] Jena K K and Hihara L H 2018 Spectroscopic characterization of covalently constrained hybrid coating clusters prepared by Michael addition and ring opening mechanismProg. Org. Coat.115159–63

[52] [52] Bousiakou L G and Karapetis S 2020 Determination of Au film thiolation and silane bonding onto SiO2 films within the frame of biosensor surface functionalization—an analysis of best practices and techniquesCroat. Chem. Acta931–14

[53] [53] Wojciechowski P M, Zierkiewicz W, Michalska D and Hobza P 2003 Electronic structures, vibrational spectra, and revised assignment of aniline and its radical cation: theoretical studyJ. Chem. Phys.11810900–11

[54] [54] Tao S, Yu L-J, Pang R, Huang Y-F, Wu D-Y and Tian Z-Q 2013 Binding interaction and Raman spectra of p− conjugated molecules containing CH2/NH2 groups adsorbed on silver surfaces: a DFT study of wagging modesJ. Phys. Chem.C11718891–903

[55] [55] Alam A U, Howlader M M R and Deen M J 2013 Oxygen plasma and humidity dependent surface analysis of silicon, silicon dioxide and glass for direct wafer bondingECS J. Solid State Sci. Technol.2515–23

[56] [56] Vos M F J, van Straaten G, Kessels W M M E and Mackus A J M 2018 Atomic layer deposition of cobalt using H2-, N2-, and NH3-based plasmas: on the role of the Co-reactantJ. Phys. Chem.C12222519–29

[57] [57] van Straaten G, Deckers R, Vos M F J, Kessels W M M and Creatore M 2020 Plasma-enhanced atomic layer deposition of cobalt and cobalt nitride: what controls the incorporation of nitrogen?J. Phys. Chem.C12422046–54

[58] [58] Tong Y, Chen P Z, Zhou T P, Xu K, Chu W S, Wu C Z and Xie Y 2017 A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: cobalt oxide nanoparticles strongly coupled to B, N-decorated grapheneAngew. Chem., Int. Ed.567121–5

[59] [59] Breeden Met al2021 Proximity effects of the selective atomic layer deposition of cobalt on the nanoscale: implications for interconnectsACS Appl. Nano Mater.48447–54

[60] [60] Huang Y J, Li M, Pan F, Zhu Z Y, Sun H M, Tang Y W and Fu G T 2023 Plasma-induced Mo-doped Co3O4 with enriched oxygen vacancies for electrocatalytic oxygen evolution in water splittingCarbon Energy5e279

[61] [61] Liu J and Nolan M 2019 Coverage and stability of NHx-terminated cobalt and ruthenium surfaces: a first-principles investigationJ. Phys. Chem.C12325166–75

[62] [62] Methfessel M, Hennig D and Scheffler M 1992 Trends of the surface relaxations, surface energies, and work functions of the 4dtransition metalsPhys. Rev.B464816–29

[63] [63] Whitten J E 2023 Ultraviolet photoelectron spectroscopy: practical aspects and best practicesAppl. Surf. Sci. Adv.13100384

[64] [64] Matito E and Sol M 2009 The role of electronic delocalization in transition metal complexes from the electron localization function and the quantum theory of atoms in molecules viewpointsCoord. Chem. Rev.253647–65

[65] [65] Lepetit C, Fau P, Fajerwerg K, Kahn M L and Silvi B 2017 Topological analysis of the metal-metal bond: a tutorial reviewCoord. Chem. Rev.345150–81

[66] [66] Van Oss C J, Good R J and Chaudhury M K 1988 Additive and nonadditive surface tension components and the interpretation of contact anglesLangmuir4884–91

[67] [67] Drelich J W, Boinovich L, Chibowski E, Della Volpe C, Hoysz L, Marmur A and Siboni S 2020 Contact angles: history of over 200 years of open questionsSurf. Innov.83–27

Tools

Get Citation

Copy Citation Text

Qi Xiaoyun, Zhou Shicheng, Ma Yan, Suga Tadatomo, Wang Chenxi. Boosting non-oxide interfacial Co/SiO2 hybrid bonding by selective surface activation[J]. International Journal of Extreme Manufacturing, 2025, 7(3): 35101

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: May. 28, 2024

Accepted: Sep. 29, 2025

Published Online: Sep. 29, 2025

The Author Email:

DOI:10.1088/2631-7990/ada834

Topics