Laser & Optoelectronics Progress, Volume. 62, Issue 14, 1415005(2025)

Lightweight Detection Network YOLOv10-EN Based on Public Safety Scenarios

Qixiang Meng1, Jingtao Wang1, Zhilin Gao1, Qiqi Kou2, and Fanliang Bu1、*
Author Affiliations
  • 1School of Information Network Security, People's Public Security University of China, Beijing 100038, China
  • 2School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu , China
  • show less
    Figures & Tables(23)
    YOLOv10 network architecture
    YOLOv10-EN network
    Calculation variables in regression loss function
    Multi-scale convolution (MSConv) module
    Structure of coordinate attention mechanism network
    Structure of EnC2f module
    Samples in the dataset
    Performance curves of YOLOv10n model based on different loss functions during the training phase. (a) Loss value; (b) F1 score; (c) mAP@0.5
    Ablation experimental results of MSConv module. (a) Detection legends of baseline model; (b) detection legends of MSConv optimization model; (c) heatmaps of baseline model; (d) heatmaps of MSConv optimization model
    Ablation experimental results of PSA module. (a) Detection legends of baseline model; (b) detection legends of PSA-CA optimization model; (c) heatmaps of baseline model; (d) heatmaps of PSA-CA optimization model
    Composition of Bottleneck module
    Ablation experimental results of Bottleneck module. (a) Detection legends of baseline model; (b) detection legends of Bottleneck optimization model; (c) heatmaps of baseline model; (d) heatmaps of Bottleneck optimization model
    F1 score curves of each object detection model
    P-R curves of each object detection model
    Experimental results of object detection models
    • Table 1. Experimental conditions

      View table

      Table 1. Experimental conditions

      DeviceVersion
      GPURTX 3090
      CPUAMD Ryzen 7 5700X
      CUDA12.1
      CuDNN8.9.0.7
    • Table 2. Experimental parameter setting

      View table

      Table 2. Experimental parameter setting

      ParameterValue
      Image size640 pixel×640 pixel
      Learning rate0.01
      OptimizerAdam
      Batch size8
      Epoch100
    • Table 3. Ablation experimental settings for MSConv module

      View table

      Table 3. Ablation experimental settings for MSConv module

      No.MSConvGroupConvolution kernel size
      Group 1Group 2Group 3Group 4
      No.1None1×13×35×5
      No.21×11×13×33×3
      No.31×11×15×55×5
      No.43×33×35×55×5
      No.5×(baseline)3×3
      No.6×(baseline)5×5
    • Table 4. Ablation experimental results for MSConv module

      View table

      Table 4. Ablation experimental results for MSConv module

      No.Params /103FLOPs /106F1 scoremAP@0.5
      No.1▲2615.59▲7769.08▲0.801▲0.799
      No.2★2658.94★7933.940.795★0.796
      No.32671.878064.47★0.7990.782
      No.42678.558130.120.7890.784
      No.5■2710.16■8433.12■0.784■0.774
      No.62816.649541.670.7800.776
    • Table 5. Ablation experimental results of PSA module

      View table

      Table 5. Ablation experimental results of PSA module

      AttentionParams /103FLOPs /106RatioF1 scoremAP@0.5
      0.51.01.5
      MHSA■2710.16■8433.12■0.784■0.774
      3189.118818.220.7910.785
      4834.4210132.160.7940.788
      CA▲2622.54▲8352.04★0.7970.789
      2994.838656.570.799★0.799
      4064.949500.94▲0.806▲0.801
    • Table 6. Ablation experimental results of Bottleneck module

      View table

      Table 6. Ablation experimental results of Bottleneck module

      Convolution

      kernel

      Params /103FLOPs /106ResidualF1 scoremAP@0.5
      (1)(2)(3)(4)(5)
      3×3 standard convolution■2710.16■8433.12■0.784■0.774
      2710.168433.38★0.788★0.780
      2710.168433.410.7870.778
      2710.168435.68▲0.792▲0.783
      5×5 standard convolution■3930.64■12516.37■0.778■0.772
      3930.6412516.94★0.7830.775
      3930.6412516.970.781★0.778
      3930.6412517.57▲0.786▲0.780

      Multi-scale-split-channel convolution

      (none, 1×1, 3×3, 5×5)

      ■2222.86■6848.98■0.804■0.799
      2222.866849.070.8070.802
      2222.866849.09★0.809★0.804
      2222.866849.18▲0.813▲0.809
    • Table 7. Ablation experimental results of each optimization module

      View table

      Table 7. Ablation experimental results of each optimization module

      No.MSConvPSA-CABottleneckParams /103FLOPs /106F1 scoremAP@0.5
      MSConvResidual
      No.1■2710.16■8435.68■0.784■0.774
      No.22615.597769.080.8010.799
      No.32622.548352.040.7970.789
      No.42222.866849.180.8130.809
      No.52527.537690.160.8190.817
      No.62188.686672.350.8060.803
      No.72615.597771.830.8030.801
      No.82188.716674.110.8080.807
      No.92196.556802.650.8150.812
      No.102623.458353.180.8010.793
      No.112197.886804.130.8180.815
      No.12▲2139.59▲6466.54★0.825★0.822
      No.132528.197692.110.8220.820
      No.14★2140.81★6468.42▲0.833▲0.824
    • Table 8. Performance comparison of object detection models

      View table

      Table 8. Performance comparison of object detection models

      ModelParams /106FLOPs /109

      F1

      score

      mAP@0.5Latency /ms
      YOLOv5n193.287.10.7660.7622.65
      YOLOv73236.51103.30.7090.71414.4
      YOLOv8n183.008.10.7710.7692.58
      YOLO-MS314.138.240.7790.7723.46
      YOLOv9c3330.7101.70.7360.7258.13
      ■YOLOv10n17■2.69■8.4■0.784■0.774■2.42
      ★YOLOv11n34★2.65★6.5★0.788★0.778★2.39
      Faster R-CNN128.33249.210.6640.625100.40
      SSD324.4130.70.6670.62813.79
      RT-DETR3542.5136.50.7860.77712.66
      ▲Ours▲2.14▲6.47▲0.833▲0.824▲2.35
    Tools

    Get Citation

    Copy Citation Text

    Qixiang Meng, Jingtao Wang, Zhilin Gao, Qiqi Kou, Fanliang Bu. Lightweight Detection Network YOLOv10-EN Based on Public Safety Scenarios[J]. Laser & Optoelectronics Progress, 2025, 62(14): 1415005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jan. 3, 2025

    Accepted: Feb. 5, 2025

    Published Online: Jul. 3, 2025

    The Author Email: Fanliang Bu (20051257@ppsuc.edu.cn)

    DOI:10.3788/LOP250445

    CSTR:32186.14.LOP250445

    Topics