Acta Photonica Sinica, Volume. 53, Issue 6, 0610003(2024)

Infrared and Visible Image Fusion Method via Interactive Self-attention

Fan YANG1, Zhishe WANG1、*, Jing SUN1, and Zhaofa YU2
Author Affiliations
  • 1School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • 2Ordnance NCO Academy, Army Engineering University of PLA, Wuhan 430075, China
  • show less
    References(25)

    [1] ZHOU Wujie, LIU Jinfu, LEI Jingsheng et al. GMNet: graded-feature multilabel-learning network for RGB-thermal urban scene semantic segmentation[J]. IEEE Transactions on Image Processing, 30, 7790-7802(2021).

    [2] FENG Zhanxiang, LAI Jianhuang, XIE Xiaohua. Learning modality-specific representations for visible-infrared person re-identification[J]. IEEE Transactions on Image Processing, 29, 579-590(2020).

    [3] SUN Ying, HOU Zhiqiang, YANG Chen et al. Object detection algorithm based on dual-modal fusion network[J]. Acta Photonica Sinica, 52, 0110002(2023).

    [4] DENG Hui, WANG Changlong, HU Yongjiang et al. Fusion of infrared and visible images based on non-subsampled dual-tree complex contourlet and adaptive block[J]. Acta Photonica Sinica, 48, 0710006(2019).

    [5] JIANG Zetao, JIANG Qi, HUANG Yongsong et al. Infrared and low-light-level visible light enhancement image fusion method based on latent low-rank representation and composite filtering[J]. Acta Photonica Sinica, 49, 0410001(2020).

    [6] LI Chenyang, DING Kun, WENG Shuai et al. Image fusion of infrared and visible images based on residual significance[J]. Infrared Technology, 42, 1042-1047(2020).

    [7] KONG Weiwei, LEI Yang, ZHAO Huaixun. Adaptive fusion method of visible light and infrared images based on non-subsampled shearlet transform and fast non-negative matrix factorization[J]. Infrared Physics & Technology, 67, 161-172(2014).

    [8] WANG Zhishe, YANG Fengbao, PENG Zhihao et al. Multi-sensor image enhanced fusion algorithm based on NSST and top-hat transformation[J]. Optik-International Journal for Light and Electron Optics, 126, 4184-4190(2015).

    [9] LI Hui, WU Xiaojun. Densefuse: a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 28, 2614-2623(2019).

    [10] WANG Zhishe, WU Yuanyuan, WANG Junyao et al. Res2Fusion: infrared and visible image fusion based on dense Res2net and double non-local attention models[J]. IEEE Transactions on Instrumentation and Measurement, 71, 1-12(2022).

    [11] WANG Zhishe, WANG Junyao, WU Yuanyuan et al. UNFusion: a unified multi-scale densely connected network for infrared and visible image fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 32, 3360-3374(2022).

    [12] XU Han, MA Jiayi, JIANG Junun et al. U2fusion: a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 502-518(2022).

    [13] LI Hui, WU Xiaojun, KITTLER J. RFN-Nest: an end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 73, 72-86(2021).

    [14] TANG Linfeng, YUAN Jiteng, ZHANG Hao et al. PIAFusion: a progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 83-84, 79-72(2022).

    [15] MA Jiayi, YU Wei, LIANG Pengwei et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 48, 11-26(2019).

    [16] MA Jiayi, ZHANG Hang, SHAO Zhenfeng et al. GANMcC: a generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 70, 1-14(2021).

    [17] WANG Zhishe, SHAO Wenyu, CHEN Yanlin et al. Infrared and visible image fusion via interactive compensatory attention adversarial learning[J]. IEEE Transactions on Multimedia, 25, 7800-7813(2023).

    [18] WANG Zhishe, SHAO Wenyu, CHEN Yanlin et al. A cross-scale iterative attentional adversarial fusion network for infrared and visible images[J]. Transactions on Circuits and Systems for Video Technology, 33, 3677-3688(2023).

    [19] WANG Zhishe, SHAO Wenyu, YANG Fengbao et al. Infrared and visible image fusion method via interactive attention-based generative adversarial network[J]. Acta Photonica Sinica, 51, 0410002(2022).

    [20] WANG Zhishe, CHEN Yanlin, SHAO Wenyu et al. SwinFuse: a residual swin transformer fusion network for infrared and visible images[J]. IEEE Transactions on Instrumentation and Measurement, 71, 1-12(2022).

    [21] TANG Wei, HE Fazhi, LIU Yu. YDTR: infrared and visible image fusion via Y-shape dynamic transformer[J]. IEEE Transactions on Multimedia, 25, 5413-5428(2023).

    [22] MA Jiayi, TANG Linfeng, FAN Fan et al. SwinFusion: cross-domain long-range learning for general image fusion via swin transformer[J]. IEEE/CAA Journal of Automatica Sinica, 7, 1200-1217(2022).

    Tools

    Get Citation

    Copy Citation Text

    Fan YANG, Zhishe WANG, Jing SUN, Zhaofa YU. Infrared and Visible Image Fusion Method via Interactive Self-attention[J]. Acta Photonica Sinica, 2024, 53(6): 0610003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 21, 2023

    Accepted: Jan. 19, 2024

    Published Online: Jul. 16, 2024

    The Author Email: Zhishe WANG (wangzs@tyust.edu.cn)

    DOI:10.3788/gzxb20245306.0610003

    Topics