Journal of Synthetic Crystals, Volume. 53, Issue 8, 1337(2024)

Analysis of the Role of Periodic Reflective Structures and Electron Blocking Layer Setup in Micro-Nano GaN-Based VCSEL

ZHU Zhenyu1, JIA Zhigang1,2, DONG Hailiang1,2, and XU Bingshe1,2,3、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(24)

    [1] [1] LI C Y, LU H H, TSAI W S, et al. A 5 m/25 Gbps underwater wireless optical communication system[J]. IEEE Photonics Journal, 2018, 10(3): 7904909.

    [2] [2] YEH P S, CHANG C C, CHEN Y T, et al. GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle[J]. Applied Physics Letters, 2016, 109(24): 241103.

    [3] [3] YU H C, ZHENG Z W, MEI Y, et al. Progress and prospects of GaN-based VCSEL from near UV to green emission[J]. Progress in Quantum Electronics, 2018, 57: 1-19.

    [4] [4] COSENDEY G, CASTIGLIA A, ROSSBACH G, et al. Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate[J]. Applied Physics Letters, 2012, 101(15): 151113.

    [5] [5] MATSUI K, KOZUKA Y, IKEYAMA K, et al. GaN-based vertical cavity surface emitting lasers with periodic gain structures[J]. Japanese Journal of Applied Physics, 2016, 55(5S): 05FJ08.

    [6] [6] IKEYAMA K, KOZUKA Y, MATSUI K, et al. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors[J]. Applied Physics Express, 2016, 9(10): 102101.

    [7] [7] IVE T, BRANDT O, KOSTIAL H, et al. Crack-free and conductive Si-doped AlNGaN distributed Bragg reflectors grown on 6H-SiC(0001)[J]. Applied Physics Letters, 2004, 85(11): 1970-1972.

    [8] [8] HUANG G S, LU T C, YAO H H, et al. Crack-free GaNAlN distributed Bragg reflectors incorporated with GaNAlN superlattices grown by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2006, 88(6): 061904-1.

    [9] [9] KAO C C, PENG Y C, YAO H H, et al. Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlNGaN and Ta2O5SiO2 distributed Bragg reflector[J]. Applied Physics Letters, 2005, 87(8): 081105.

    [10] [10] WENG G E, MEI Y, LIU J P, et al. Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers[J]. Optics Express, 2016, 24(14): 15546-15553.

    [11] [11] KASAHARA D, MORITA D, KOSUGI T, et al. Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature[J]. Applied Physics Express, 2011, 4(7): 072103.

    [12] [12] LIU W J, HU X L, YING LEI-YING, et al. Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers[J]. Applied Physics Letters, 2014, 104(25): 251116.

    [13] [13] WU Y P, XIAO Y X, NAVID I, et al. InGaN micro-light-emitting diodes monolithically grown on Si: achieving ultra-stable operation through polarization and strain engineering[J]. Light: Science & Applications, 2022, 11: 294.

    [14] [14] ALONSO-ORTS M, HTZEL R, GRIEB T, et al. Correlative analysis on InGaN/GaN nanowires: structural and optical properties of self-assembled short-period superlattices[J]. Discover Nano, 2023, 18(1): 27.

    [15] [15] LI C Y, LIU S, LUK T S, et al. Intrinsic polarization control in rectangular GaN nanowire lasers[J]. Nanoscale, 2016, 8(10): 5682-5687.

    [16] [16] ZUBIA D, HERSEE S D. Nanoheteroepitaxy: the Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials[J]. Journal of Applied Physics, 1999, 85(9): 6492-6496.

    [17] [17] LU T C, CHEN S W, WU T T, et al. Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature[J]. Applied Physics Letters, 2010, 97(7): 071114.

    [18] [18] KATSURAGAWA M, SOTA S, KOMORI M, et al. Thermal ionization energy of Si and Mg in AlGaN[J]. Journal of Crystal Growth, 1998, 189/190(1/2): 528-531.

    [19] [19] VERZELLESI G, SAGUATTI D, MENEGHINI M, et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: physical mechanisms and remedies[J]. Journal of Applied Physics, 2013, 114(7): 071101.

    [20] [20] HAN S H, LEE D Y, LEE S J, et al. Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes[J]. Applied Physics Letters, 2009, 94(23): 231123.

    [21] [21] YANG Y, CAO X A, YAN C H. Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes[J]. IEEE Transactions on Electron Devices, 2008, 55(7): 1771-1775.

    [22] [22] MUKAI T, YAMADA M, SHUJINAKAMURA S. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes[J]. Japanese Journal of Applied Physics, 1999, 38(7A): 3976.

    [24] [24] LI C K, WU Y R. Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 400-407.

    [25] [25] HAN L, GAO Y B, HANG S, et al. Impact of p-AlGaN/GaN hole injection layer on GaN-based vertical cavity surface emitting laser diodes[J]. Chinese Optics Letters, 2022, 20(3): 031402.

    Tools

    Get Citation

    Copy Citation Text

    ZHU Zhenyu, JIA Zhigang, DONG Hailiang, XU Bingshe. Analysis of the Role of Periodic Reflective Structures and Electron Blocking Layer Setup in Micro-Nano GaN-Based VCSEL[J]. Journal of Synthetic Crystals, 2024, 53(8): 1337

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 8, 2024

    Accepted: --

    Published Online: Dec. 3, 2024

    The Author Email: Bingshe XU (xubs@tyut.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics