Bulletin of the Chinese Ceramic Society, Volume. 44, Issue 5, 1918(2025)
Preparation of Bi/TiO2∶Sm3+ Composite Fibers and Visible Light Photocatalytic Degradation of Antibiotic Lomofloxacin
[1] [1] ALBAHRANI S, ALMOGBEL F, ALANAZI W, et al. Carbapenem use correlates with percentage of patients with COVID-19 in intensive care units[J]. Infection, 2023, 51(2): 331-336.
[4] [4] FRANK S N, BARD A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J]. Journal of the American Chemical Society, 1977, 99(1): 303-304.
[5] [5] LI C G, TIAN Q, ZHANG Y L, et al. Sequential combination of photocatalysis and microalgae technology for promoting the degradation and detoxification of typical antibiotics[J]. Water Research, 2022, 210: 117985.
[6] [6] LI C, SUN T Y, YI G H, et al. In-depth insight into the Ag/CNQDs/g-C3N4 photocatalytic degradation of typical antibiotics: influence factor, mechanism and toxicity evaluation of intermediates[J]. Molecules, 2023, 28(4): 1597.
[7] [7] RAN B, RAN L, WANG Z K, et al. Photocatalytic antimicrobials: principles, design strategies, and applications[J]. Chemical Reviews, 2023, 123(22): 12371-12430.
[8] [8] LUO J, LIN P P, ZHENG P L, et al. In suit constructing S-scheme FeOOH/MgIn2S4 heterojunction with boosted interfacial charge separation and redox activity for efficiently eliminating antibiotic pollutant[J]. Chemosphere, 2022, 298: 134297.
[9] [9] WANG Z, LIU S W, WANG L, et al. BiVO4@Bi2S3 heterojunction nanorods with enhanced charge separation efficiency for multimodal imaging and synergy therapy of tumor[J]. ACS Applied Bio Materials, 2020, 3(8): 5080-5092.
[10] [10] LI Z R, WANG P L, LIANG Z H, et al. Bismuth nano-nest/Ti3CN quantum dot-based surface plasmon coupling electrochemiluminescence sensor for ascites miRNA-421 detection[J]. Analytical Chemistry, 2023, 95(25): 9706-9713.
[11] [11] DONG F, ZHAO Z W, SUN Y J, et al. An advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification[J]. Environmental Science & Technology, 2015, 49(20): 12432-12440.
[12] [12] YANG J J, LI L, XIAO P C, et al. Dual-plasmon resonance coupling promoting directional photosynthesis of nitrate from air[J]. Angewandte Chemie International Edition, 2023, 62(47): e202311911.
[13] [13] QU L L, LUO Z J, TANG C. One step synthesis of Bi@Bi2O3@carboxylate-rich carbon spheres with enhanced photocatalytic performance[J]. Materials Research Bulletin, 2013, 48(11): 4601-4605.
[14] [14] TAN S J, DAI Y N, ZHANG S M, et al. Coherent electron transfer at the Ag/graphite heterojunction interface[J]. Physical Review Letters, 2018, 120(12): 126801.
[15] [15] ZHANG L L, ZHENG Q J, XIE Y, et al. Delocalized impurity phonon induced electron-hole recombination in doped semiconductors[J]. Nano Letters, 2018, 18(3): 1592-1599.
[16] [16] YAN W Y, YAN Y Y, WANG Z R, et al. Enhancing the photocatalytic efficiency of two-dimensional aluminum nitride materials through strategic rare earth doping[J]. Physical Chemistry Chemical Physics, 2023, 25(37): 25442-25449.
[17] [17] BAVIERA P, HAREL S, GAREM H, et al. Elaboration and structure of nanostructured TiC: a XRD and HRTEM study[J]. Scripta Materialia, 2001, 44(12): 2721-2727.
[18] [18] TONEJC A M, DJERDJ I, TONEJC A. Evidence from HRTEM image processing, XRD and EDS on nanocrystalline iron-doped titanium oxide powders[J]. Materials Science and Engineering: B, 2001, 85(1): 55-63.
[19] [19] DONG F, LI Q Y, SUN Y J, et al. Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis[J]. ACS Catalysis, 2014, 4(12): 4341-4350.
[20] [20] CAO T P, LI Y J, WANG C H, et al. Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity[J]. Journal of Materials Chemistry, 2011, 21(19): 6922.
[21] [21] LI Y Y, DANG L Y, HAN L F, et al. Iodine-sensitized Bi4Ti3O12/TiO2 photocatalyst with enhanced photocatalytic activity on degradation of phenol[J]. Journal of Molecular Catalysis A: Chemical, 2013, 379: 146-151.
[22] [22] NYHOLM R, BERNDTSSON A, MARTENSSON N. Core level binding energies for the elements Hf to Bi (Z=72~83)[J]. Journal of Physics C: Solid State Physics, 1980, 13(36): L1091-L1096.
[23] [23] XIE F X, MAO X M, FAN C M, et al. Facile preparation of Sn-doped BiOCl photocatalyst with enhanced photocatalytic activity for benzoic acid and rhodamine B degradation[J]. Materials Science in Semiconductor Processing, 2014, 27: 380-389.
[24] [24] WANG L L, MA W H, FANG Y F, et al. Bi4Ti3O12 synthesized by high temperature solid phase method and it’s visible catalytic activity[J]. Procedia Environmental Sciences, 2013, 18: 547-558.
[25] [25] ISHIKAWA A, TAKATA T, KONDO J N, et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (≤650 nm)[J]. Journal of the American Chemical Society, 2002, 124(45): 13547-13553.
[26] [26] WANG F, ZENG F S, YU Z Y, et al. A comparative study about the influence of nitrogen doping and oxygen vacancies on the photocatalytic performance of ceria[J]. Surfaces and Interfaces, 2024, 46: 103889.
[27] [27] WANG L L, YANG T, PENG L J, et al. Dual transfer channels of photo-carriers in 2D/2D/2D sandwich-like ZnIn2S4/g-C3N4/Ti3C2 MXene S-scheme/Schottky heterojunction for boosting photocatalytic H2 evolution[J]. Chinese Journal of Catalysis, 2022, 43(10): 2720-2731.
[28] [28] DING J, LI C H, YIN H S, et al. One-pot solvothermal synthesis of Bi/Bi2S3/Bi2WO6 S-scheme heterojunction with enhanced photoactivity towards antibiotic oxytetracycline degradation under visible light[J]. Environmental Pollution, 2023, 327: 121550.
[29] [29] YU M F, CHEN Y L, GAO M, et al. Interspersed Bi promoting hot electron transfer of covalent organic frameworks boosts nitrogen reduction to ammonia[J]. Small, 2023, 19(7): 2206407.
[30] [30] LI X M, DONG Q B, LI F, et al. Defective Bi@BiOBr/C microrods derived from Bi-MOF for efficient photocatalytic NO abatement: directional regulation of interfacial charge transfer via carbon-loading[J]. Applied Catalysis B: Environmental, 2024, 340: 123238.
[31] [31] CHEN Z W, JIANG H, JIN W L, et al. Enhanced photocatalytic performance over Bi4Ti3O12 nanosheets with controllable size and exposed {001} facets for rhodamine B degradation[J]. Applied Catalysis B: Environmental, 2016, 180: 698-706.
Get Citation
Copy Citation Text
LI Yuejun, CAO Tieping, SUN Dawei. Preparation of Bi/TiO2∶Sm3+ Composite Fibers and Visible Light Photocatalytic Degradation of Antibiotic Lomofloxacin[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(5): 1918
Category:
Received: Nov. 12, 2024
Accepted: Jun. 12, 2025
Published Online: Jun. 12, 2025
The Author Email: CAO Tieping (bcctp2008@163.com)