International Journal of Extreme Manufacturing, Volume. 7, Issue 3, 32008(2025)
Optimizing electrical output performance of triboelectric nanogenerators by micro-/nano-morphology design and fabrication
[1] [1] Gong S, Schwalb W, Wang Y W, Chen Y, Tang Y, Si J, Shirinzadeh B and Cheng W L 2014 A wearable and highly sensitive pressure sensor with ultrathin gold nanowiresNat. Commun.53132
[2] [2] Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba D N and Hata K 2011 A stretchable carbon nanotube strain sensor for human-motion detectionNat. Nanotechnol.6296–301
[3] [3] Gao Wet al2016 Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysisNature529509–14
[4] [4] Dai X Yet al2022 A phonic Braille recognition system based on a self-powered sensor with self-healing ability, temperature resistance, and stretchabilityMater. Horiz.92603–12
[5] [5] Lin X D, Feng Z Y, Xiong Y, Sun W W, Yao W C, Wei Y C, Wang Z L and Sun Q J 2024 Piezotronic neuromorphic devices: principle, manufacture, and applicationsInt. J. Extrem. Manuf.6032011
[6] [6] Kim J Y, Lee J W, Jung H S, Shin H and Park N G 2020 High-efficiency perovskite solar cellsChem. Rev.1207867–918
[7] [7] Shi X L, Zou J and Chen Z G 2020 Advanced thermoelectric design: from materials and structures to devicesChem. Rev.1207399–515
[8] [8] Hou K X, Dai X Y, Zhao S P, Huang L B and Li C H 2023 A damage-tolerant, self-healing and multifunctional triboelectric nanogeneratorNano Energy116108739
[9] [9] Dai X Y, Wu Y H, Liang Q H, Yang J K, Huang L B, Kong J and Hao J H 2023 Soft robotic-adapted multimodal sensors derived from entirely intrinsic self-healing and stretchable cross-linked networksAdv. Funct. Mater.332304415
[10] [10] Wang Z L 2013 Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensorsACS Nano79533–57
[11] [11] Huang L B, Dai X Y, Sun Z H, Wong M C, Pang S Y, Han J C, Zheng Q Q, Zhao C H, Kong J and Hao J H 2021 Environment-resisted flexible high performance triboelectric nanogenerators based on ultrafast self-healing non-drying conductive organohydrogelNano Energy82105724
[12] [12] Lee D, Chae J, Cho S, Kim J W, Ahmad A, Karim M R, La M, Park S J and Choi D 2024 Bidirectional rotating direct-current triboelectric nanogenerator with self-adaptive mechanical switching for harvesting reciprocating motionInt. J. Extrem. Manuf.6045502
[13] [13] Lin Z M, Zhang B B, Zou H Y, Wu Z Y, Guo H Y, Zhang Y, Yang J and Wang Z L 2020 Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durabilityNano Energy68104378
[14] [14] Hu J, Iwamoto M and Chen X Y 2024 A review of contact electrification at diversified interfaces and related applications on triboelectric nanogeneratorNano-Micro Lett.167
[15] [15] Zhang C, Zhao J Q, Zhang Z, Bu T Z, Liu G X and Fu X P 2023 Tribotronics: an emerging field by coupling triboelectricity and semiconductorsInt. J. Extrem. Manuf.5042002
[16] [16] Zou Y J, Xu J, Chen K and Chen J 2021 Advances in nanostructures for high-performance triboelectric nanogeneratorsAdv. Mater. Technol.62000916
[17] [17] Dai X Yet al2024 Self-powered sensors for flexible electronic skins capable of self-healing under multiple extreme environmentsNano Energy121109239
[18] [18] Wang Z L, Chen J and Lin L 2015 Progress in triboelectric nanogenerators as a new energy technology and self-powered sensorsEnergy Environ. Sci.82250–82
[19] [19] Xu Z Y, Zhang D Z, Cai H L, Yang Y, Zhang H and Du C 2022 Performance enhancement of triboelectric nanogenerators using contact-separation mode in conjunction with the sliding mode and multifunctional application for motion monitoringNano Energy102107719
[20] [20] Hurdoganoglu D, Safaei B, Cheng J, Qin Z Y and Sahmani S 2024 A comprehensive review on the novel principles, development and applications of triboelectric nanogeneratorsAppl. Mech. Rev.76010802
[21] [21] Chun J, Kim J W, Jung W S, Kang C Y, Kim S W, Wang Z L and Baik J M 2015 Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environmentsEnergy Environ. Sci.83006–12
[22] [22] Ye X, Li Y N, Ma X S, Gan L and Huang J 2023 Enhancing output signals of sport monitors based on triboelectric porous PVDF nanogenerators via concaving cells and cell-packing structuresACS Appl. Bio Mater.64168–77
[23] [23] Wen H G, Yang P Y, Liu G L, Xu S X, Yao H L, Li W T, Qu H, Ding J J, Li J Y and Wan L Y 2022 Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedomNano Energy93106796
[24] [24] Zhang C, Zhang L, Pu Z H, Bao B, Ouyang W Y and Li D C 2023 Fabricating 1D stretchable fiber-shaped electronics based on inkjet printing technology for wearable applicationsNano Energy113108574
[25] [25] Lai Y C, Ginnaram S, Lin S P, Hsu F C, Lu T C and Lu M H 2024 Breathable and stretchable multifunctional triboelectric liquid-metal E-skin for recovering electromagnetic pollution, extracting biomechanical energy, and as whole-body epidermal self-powered sensorsAdv. Funct. Mater.342312443
[26] [26] Munirathinam P and Chandrasekhar A 2023 Self-powered triboelectric nanogenerator for security applicationsMicromachines14592
[27] [27] Zhang L M, Xue F, Du W M, Han C B, Zhang C and Wang Z L 2014 Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensorNano Res.71215–23
[28] [28] Paosangthong W, Wagih M, Torah R and Beeby S 2019 Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structureNano Energy66104148
[29] [29] Hao X Y, Huang T, Li M, Pan Y T, Liao L, Zhang K Y and Qin A M 2023 Low-frequency AC-photocatalysis coupling for high-efficiency removal of organic pollutants from water based on the self-powered triboelectric nanogeneratorJ. Mater. Chem.A1116403–13
[30] [30] Dai X Y, Huang L B, Du Y Z, Han J C, Zheng Q Q, Kong J and Hao J H 2020 Self-healing, flexible, and tailorable triboelectric nanogenerators for self-powered sensors based on thermal effect of infrared radiationAdv. Funct. Mater.301910723
[31] [31] Hui Z Y, Zhang L R, Ren G Z, Sun G Z, Yu H D and Huang W 2023 Green flexible electronics: natural materials, fabrication, and applicationsAdv. Mater.352211202
[32] [32] Wu Y P, Dai X Y, Sun Z H, Zhu S X, Xiong L, Liang Q H, Wong M C, Huang L B, Qin Q and Hao J H 2022 Highly integrated, scalable manufacturing and stretchable conductive core/shell fibers for strain sensing and self-powered smart textilesNano Energy98107240
[33] [33] Rahman M T, Rahman M S, Kumar H, Kim K and Kim S 2023 Metal-organic framework reinforced highly stretchable and durable conductive hydrogel-based triboelectric nanogenerator for biomotion sensing and wearable human-machine interfacesAdv. Funct. Mater.332303471
[34] [34] Wang D Y, Zhang D Z, Yang Y, Mi Q, Zhang J H and Yu L D 2021 Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like mxene/metal-organic framework-derived CuO nanohybrid ammonia sensorACS Nano152911–9
[35] [35] Liao L Y, Ni Q Q, Peng W and Mei Q S 2024 Advances in multifunctional sensors based on triboelectric nanogenerator—applications, triboelectric materials, and manufacturing integrationAdv. Mater. Technol.92301592
[36] [36] Nurmakanov Y, Kalimuldina G, Nauryzbayev G, Adair D and Bakenov Z 2021 Structural and chemical modifications towards high-performance of triboelectric nanogeneratorsNanoscale Res. Lett.16122
[37] [37] Cao C, Li Z J, Shen F, Zhang Q, Gong Y, Guo H Y, Peng Y and Wang Z L 2024 Progress in techniques for improving the output performance of triboelectric nanogeneratorsEnergy Environ. Sci.17885–924
[38] [38] Fan F R, Lin L, Zhu G, Wu W Z, Zhang R and Wang Z L 2012 Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic filmsNano Lett.123109–14
[39] [39] Mi Y J, Zhao Z Q, Wu H, Lu Y and Wang N 2023 Porous polymer materials in triboelectric nanogenerators: a reviewPolymers154383
[40] [40] Shi X Wet al2023 Leaf surface-microstructure inspired fabrication of fish gelatin-based triboelectric nanogeneratorNano Energy109108231
[41] [41] Gu L, Wang Y X, Yang M S, Xu H, Zhang W Q, Ren Z W, Meng L X, Cui N Y and Liu J M 2024 Hierarchical wrinkles with piezopotential enhanced surface tribopolarity for high-performance self-powered pressure sensorACS Appl. Mater. Interfaces163901–10
[42] [42] Haghayegh M, Cao R, Zabihi F, Bagherzadeh R, Miao Y E, Yang S Y and Zhu M F 2023 Hierarchically spring nanofibrous and wrinkled-structured electrode for highly comfortable wearable triboelectric nanogeneratorsJ. Mater. Chem.A1125441–54
[43] [43] Yang Tet al2024 Nanopatterning of beaded poly(lactic acid) nanofibers for highly electroactive, breathable, UV-shielding and antibacterial protective membranesInt. J. Biol. Macromol.260129566
[44] [44] Rani G M, Ghoreishian S M, Ranjith K S, Park S H, Lee M, Umapathi R, Han Y K and Huh Y S 2023 High roughness induced pearl necklace-like ZIF-67@PAN fiber-based triboelectric nanogenerators for mechanical energy harvestingAdv. Mater. Technol.82300685
[45] [45] Liao J Yet al2024 Tunable and hierarchically porous self-powered sensor with high sensitivityNano Energy121109252
[46] [46] Haleem A, Haider Z, Ahmad R U S, Claver U P, Shah A, Zhao G and He W D 2020 Highly porous and thermally stable tribopositive hybrid bimetallic cryogel to boost up the performance of triboelectric nanogeneratorsInt. J. Energy Res.448442–54
[47] [47] Gao J M, Qin J Q, Chang J Y, Liu H Q, Wu Z S and Feng L 2020 NH3 sensor based on 2D wormlike polypyrrole/graphene heterostructures for a self-powered integrated systemACS Appl. Mater. Interfaces1238674–81
[48] [48] Feng M, Ma S C, Liu Y, Zheng Y B, Feng Y G, Wang H C, Cheng J H and Wang D A 2022 Control of triboelectrification on Al-metal surfaces through microstructural designNanoscale1415129–40
[49] [49] Jeong C Ket al2014 Topographically-designed triboelectric nanogenerator via block copolymer self-assemblyNano Lett.147031–8
[50] [50] Huang J X, Xu B G, Gao Y Y, Jiang C H Z, Guan X Y, Li Z H, Han J and Chung K Y 2022 Surface microstructural engineering of continuous fibers as one-dimensional multifunctional fiber materials for wearable electronic applicationsChem. Eng. J.446137192
[51] [51] Zhou H, Wang X T, Wang Y Q, Nan Y B, Xu H, Wu Y, Niu J M, Duan J Z, Huang Y L and Hou B R 2022 Enhanced triboelectric nanogenerator performance based on mechanical imprinting PDMS microstructuresAdv. Mater. Interfaces92201525
[52] [52] Chau N M, Le T H, La T T H and Bui V T 2023 Industrially compatible production of customizable honeycomb-patterned poly(vinyl chloride) using food-wrapping waste for power-boosting triboelectric nanogenerator and ocean wave energy harvesterJ. Sci. Adv. Mater. Devices8100637
[53] [53] Dai X Yet al2024 Self-powered colorful dynamic electrowetting display systems based on triboelectricitySmall202310359
[54] [54] Kumbhakar P, Parui A, Ambekar R S, Mukherjee M, Siddique S, Pugno N M, Singh A K and Tiwary C S 2022 Rain energy harvesting using atomically thin gadolinium telluride decorated 3D printed nanogeneratorAdv. Sustain. Syst.62200296
[55] [55] Feng H F, Li H Y, Xu J, Yin Y M, Cao J W, Yu R X, Wang B X, Li R W and Zhu G 2022 Triboelectric nanogenerator based on direct image lithography and surface fluorination for biomechanical energy harvesting and self-powered sterilizationNano Energy98107279
[56] [56] Zhao C H, Wu Y H, Dai X Y, Han J C, Dong B Q and Huang L B 2022 Calliopsis structure-based triboelectric nanogenerator for harvesting wind energy and self-powerd wind speed/direction sensorMater. Des.221111005
[57] [57] Yang Y, Jiang W K, Wang Y, Wu C, Chen H L, Lyu G, Ma J L, Ni Y H and Liu Y 2024 Preparation of strong and tough conductive hydrogel based on grafting, Fe3+-catechol complexations and salting out for triboelectric nanogeneratorsJ. Colloid Interface Sci.661450–9
[58] [58] Mishra S, Rakshita M, Divi H, Potu S and Rajaboina R K 2023 Unique contact point modification technique for boosting the performance of a triboelectric nanogenerator and its application in road safety sensing and detectionACS Appl. Mater. Interfaces1533095–108
[59] [59] Zhang S P, Rana S S, Bhatta T, Pradhan G B, Sharma S, Song H, Jeong S and Park J Y 2023 3D printed smart glove with pyramidal MXene/eco flex composite-based toroidal triboelectric nanogenerators for wearable human-machine interaction applicationsNano Energy106108110
[60] [60] Cui X, Nie J H and Zhang Y 2024 Recent advances in high charge density triboelectric nanogeneratorsInt. J. Extrem. Manuf.6042001
[61] [61] Wang Z L 2017 On Maxwell's displacement current for energy and sensors: the origin of nanogeneratorsMater. Today2074–82
[62] [62] Niu S M, Wang S H, Lin L, Liu Y, Zhou Y S, Hu Y F and Wang Z L 2013 Theoretical study of contact-mode triboelectric nanogenerators as an effective power sourceEnergy Environ. Sci.63576–83
[63] [63] Li C, Bai Y, Shao J J, Meng H Y and Li Z 2024 Strategies to improve the output performance of triboelectric nanogeneratorsSmall Methods82301682
[64] [64] Wu L A, Xue P, Fang S Z, Gao M, Yan X J, Jiang H, Liu Y, Wang H H, Liu H B and Cheng B W 2024 Boosting the output performance of triboelectric nanogenerators via surface engineering and structure designingMater. Horiz.11341–62
[65] [65] Wang Cet al2021 Stretchable, self-healing, and skin-mounted active sensor for multipoint muscle function assessmentACS Nano1510130–40
[66] [66] Chen Y H, Pu X, Liu M M, Kuang S Y, Zhang P P, Hua Q L, Cong Z F, Guo W B, Hu W G and Wang Z L 2019 Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrificationACS Nano138936–45
[67] [67] Pradel K C and Fukata N 2021 Systematic optimization of triboelectric nanogenerator performance through surface micropatterningNano Energy83105856
[68] [68] Huang L B, Xu W and Hao J H 2017 Energy device applications of synthesized 1D polymer nanomaterialsSmall131701820
[69] [69] Wu Y, Wang X T, Wang Y Q, Nan Y B, Xu H, Zhou H, Ren M P, Duan J Z, Huang Y L and Hou B R 2023 Enhancing the performance of triboelectric nanogenerator via facile PDMS surface modificationAdv. Eng. Mater.252201442
[70] [70] Lin L and Chung C K 2021 PDMS microfabrication and design for micro fluidics and sustainable energy application: reviewMicromachines121350
[71] [71] Rasel M S U and Park J Y 2017 A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting applicationAppl. Energy206150–8
[72] [72] Huang L B, Bai G X, Wong M C, Yang Z B, Xu W and Hao J H 2016 Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissionsAdv. Mater.282744–51
[73] [73] Tao Ket al2022 Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfacesAdv. Sci.92104168
[74] [74] Kim J, Gulahmadov O and Muradov M B 2021 Enhancement of performance of triboelectric generators by introduction of micro- and nano-structures on triboelectric filmsJ. Mater. Sci., Mater. Electron.3224661–80
[75] [75] Zhang J-Het al2022 Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interferenceNat. Commun.135839
[76] [76] Zhang B S, Jiang Y C, Ren T C, Chen B J, Zhang R Y and Mao Y C 2024 Recent advances in nature inspired triboelectric nanogenerators for self-powered systemsInt. J. Extrem. Manuf.6062003
[77] [77] Seol M L, Woo J H, Lee D I, Im H, Hur J and Choi Y K 2014 Nature-replicated nano-in-micro structures for triboelectric energy harvestingSmall103887–94
[78] [78] Sun J G, Yang T N, Kuo I S, Wu J M, Wang C Y and Chen L J 2017 A leaf-molded transparent triboelectric nanogenerator for smart multifunctional applicationsNano Energy32180–6
[79] [79] Li H, Wang S Y, Dong X R, Ding X R, Sun Y N, Tang H, Lu Y J, Tang Y and Wu X Y 2022 Recent advances on ink-based printing techniques for triboelectric nanogenerators: printable inks, printing technologies and applicationsNano Energy101107585
[80] [80] Azadmanjiri J, Reddy T N, Khezri B, Dkanovsk L, Parameswaran A K, Pal B, Ashtiani S, Wei S Y and Sofer Z 2022 Prospective advances in MXene inks: screen printable sediments for flexible micro-supercapacitor applicationsJ. Mater. Chem.A104533–57
[81] [81] Cao Ret al2018 Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interactionACS Nano125190–6
[82] [82] Chen Y, Hua J, Ling Y L, Liu Y, Chen M T, Ju B, Gao W, Mills A, Tao X M and Yin R 2023 An airflow-driven system for scalable production of nano-microfiber wrapped triboelectric yarns for wearable applicationsChem. Eng. J.477147026
[83] [83] Zhang W L, Lu Y X, Liu T, Zhao J M, Liu Y H, Fu Q, Mo J L, Cai C C and Nie S X 2022 Spheres multiple physical network-based triboelectric materials for self-powered contactless sensingSmall182200577
[84] [84] Jang S, Kim H, Kim Y, Kang B J and Oh J H 2016 Honeycomb-like nanofiber based triboelectric nanogenerator using self-assembled electrospun poly (vinylidene fluoride-co-trifluoroethylene) nanofibersAppl. Phys. Lett.108143901
[85] [85] Huang L B, Han J C, Chen S J, Sun Z H, Dai X Y, Ge P H, Zhao C H, Zheng Q Q, Sun F C and Hao J H 2021 4D-printed self-recovered triboelectric nanogenerator for energy harvesting and self-powered sensorNano Energy84105873
[86] [86] Zhang Y Y, Zhang T Y, Huang Z D and Yang J 2022 A new class of electronic devices based on flexible porous substratesAdv. Sci.92105084
[87] [87] Xu W, Huang L B, Wong M C, Chen L, Bai G X and Hao J H 2017 Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensorsAdv. Energy Mater.71601529
[88] [88] Zheng Q F, Fang L M, Guo H Q, Yang K F, Cai Z Y, Meador M A B and Gong S Q 2018 Highly porous polymer aerogel film-based triboelectric nanogeneratorsAdv. Funct. Mater.281706365
[89] [89] Le T S Det al2022 Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronicsAdv. Funct. Mater.322205158
[90] [90] Lei Het al2023 Self-assembled porous-reinforcement microstructure-based flexible triboelectric patch for remote healthcareNano-Micro Lett.15109
[91] [91] Zhu G, Lin Z H, Jing Q S, Bai P, Pan C F, Yang Y, Zhou Y S and Wang Z L 2013 Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogeneratorNano Lett.13847–53
[92] [92] Wang H, Shi M Y, Zhu K, Su Z M, Cheng X L, Song Y, Chen X X, Liao Z Q, Zhang M and Zhang H X 2016 High performance triboelectric nanogenerators with aligned carbon nanotubesNanoscale818489–94
[93] [93] Li M J, Lu H W, Wang S W, Li R P, Chen J Y, Chuang W S, Yang F S, Lin Y F, Chen C Y and Lai Y C 2022 Filling the gap between topological insulator nanomaterials and triboelectric nanogeneratorsNat. Commun.13938
[94] [94] Huang L B, Xu W, Zhao C H, Zhang Y L, Yung K L, Diao D F, Fung K H and Hao J H 2020 Multifunctional water drop energy harvesting and human motion sensor based on flexible dual-mode nanogenerator incorporated with polymer nanotubesACS Appl. Mater. Interfaces1224030–8
[95] [95] Huang L B, Xu W, Tian W, Han J C, Zhao C H, Wu H L and Hao J H 2020 Ultrasonic-assisted ultrafast fabrication of polymer nanowires for high performance triboelectric nanogeneratorsNano Energy71104593
[96] [96] Sedeh A D, Karimzadeh F and Kharaziha M 2023 A high-performance single-electrode triboelectric nanogenerator based on polydimethylsiloxane surface modified using zinc oxide nanotubes: fabrication and simulationSustain. Energy Technol. Assess.56103058
[97] [97] Hyun B G, Jun Y S, Lee J H, Hamidinejad M, Saadatnia Z, Naguib H E and Park C B 2023 Fabrication of microcellular TPU/BN-CNT nanocomposite foams for high-performance all-in-one structure triboelectric nanogeneratorsCompositesB262110813
[98] [98] Ge X H, Hu N, Yan F J and Wang Y 2023 Development and applications of electrospun nanofiber-based triboelectric nanogeneratorsNano Energy112108444
[99] [99] Duan Q S, Peng W Q, He J X, Zhang Z J, Wu Z C, Zhang Y, Wang S F and Nie S X 2023 Rational design of advanced triboelectric materials for energy harvesting and emerging applicationsSmall Methods72201251
[100] [100] Chen Q, Li W J, Yan F, Maniar D, van Dijken J, Rudolf P, Pei Y T and Loos K 2023 Lightweight triboelectric nanogenerators based on hollow stellate cellulose films derived fromJuncus effususL. aerenchymaAdv. Funct. Mater.332304801
[101] [101] Lai Y C, Lu H W, Wu H M, Zhang D G, Yang J Y, Ma J, Shamsi M, Vallem V and Dickey M D 2021 Elastic multifunctional liquid-metal fibers for harvesting mechanical and electromagnetic energy and as self-powered sensorsAdv. Energy Mater.112100411
[102] [102] Kim M, Choi C, Lee J P, Kim J and Cha C 2022 Multiscale engineering of nanofiber-aerogel composite nanogenerator with tunable triboelectric performance based on multifunctional polysuccinimideSmall182107316
[103] [103] Weldemhret T G, Lee D W, Prabhakar M N, Park Y T and Song J I 2022 Polyurethane foams coated with phosphorus-doped mesoporous carbon for flame-retardant triboelectric nanogeneratorsACS Appl. Nano Mater.512464–76
[104] [104] Prada T, Harnchana V, Lakhonchai A, Chingsungnoen A, Poolcharuansin P, Chanlek N, Klamchuen A, Thongbai P and Amornkitbamrung V 2022 Enhancement of output power density in a modified polytetra fluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applicationsNano Res.15272–9
[105] [105] Han G H, Lee S H, Gao J, Shin H S, Lee J W, Choi K J, Yang Y, Song H C, Kim Y and Baik J M 2023 Sustainable charged composites with amphiphobic surfaces for harsh environment-tolerant non-contact mode triboelectric nanogeneratorsNano Energy112108428
[106] [106] Wang M, Zheng N, Tang Y J, Zhang H, Ning C, Tian L, Li W H, Zhang J H, Mao Y C and Liang E J 2017 Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronicsJ. Mater. Chem.A512252–7
[107] [107] Xi J G, Li H, Xi J M, Tan S B, Zheng J L and Tan Z X 2020 Preparation of high porosity biochar materials by template method: a reviewEnviron. Sci. Pollut. Res.2720675–84
[108] [108] Zhang L, Jin L, Liu B and He J 2019 Templated growth of crystalline mesoporous materials: from soft/hard templates to colloidal templatesFront. Chem.722
[109] [109] Cho C, Lee C and Oh J H 2024 Wearable self-powered pressure-sensing device based on a combination of carbon nanotubes/porous poly(dimethylsiloxane) and poly(ethylene oxide)ACS Appl. Nano Mater.75040–50
[110] [110] Mohamadbeigi N, Rafiefard N, Ejehi F, Mohammadpour R and Zad A I 2024 Triboelectric nanogenerator-enabled 3D microporous polydimethylsiloxane-graphene oxide nanocomposite for flexible self-powered humidity sensing applicationsEnergy Technol.122301136
[111] [111] Raj S S, Davis D, Viswanathan P, Chandrasekhar A and Vinod T P 2022 Compositionally homogeneous soft wrinkles on elastomeric substrates: novel fabrication method, water collection from fog, and triboelectric charge generationMacromol. Mater. Eng.3072200247
[112] [112] Ahn J, Han H, Ha J H, Jeong Y, Jung Y, Choi J, Cho S, Jeon S, Jeong J H and Park I 2024 Micro-/nanohierarchical structures physically engineered on surfaces: analysis and perspectiveAdv. Mater.362300871
[113] [113] Hu Z P, Zheng Y B, Qu D, Omar R, Li J, Sublaban M, Bu L J and Haick H 2024 A convenient and universal strategy toward solvent-tolerant microporous structure for high-performance wearable electronics and smart textilesAdv. Mater. Technol.92301277
[114] [114] Guo M L, Wang C, Yang Z C, Xu Z T, Yang M S, Zhao P K, Zhou Y, Li P Y, Wang Q D and Li Y 2022 Controllable and scalable fabrication of superhydrophobic hierarchical structures for water energy harvestingElectronics111651
[115] [115] Liang C, Zhang L W, Zhao N, Zhou W, Deng X, Zhou Y G, Hou Y X and Zhang W Q 2022 Laser etching-based surface wetting modulation of silicone rubber for triboelectric nanogeneratorFront. Energy Res.10987181
[116] [116] Jiang W J, Liu J Y, Zhang H S, Song D L, Yu J, Liu Q, Chen R R, Zhu J H and Wang J 2024 Low-temperature resistant hydrogel with inkjet-printed MXene on microspine surface for pressure sensing and triboelectric energy harvestingChem. Eng. J.483149117
[117] [117] Jiao Yet al2024 High-performance triboelectric nanogenerators based on blade-coating lead halide perovskite film and electrospinning PVDF/graphene nanofiberChem. Eng. J.483149442
[118] [118] Wajahat M, Kouzani A Z, Khoo S Y and Mahmud M A P 2022 A review on extrusion-based 3D-printed nanogenerators for energy harvestingJ. Mater. Sci.57140–69
[119] [119] Zheng R H, Chen Y X, Chi H, Qiu H, Xue H and Bai H 2020 3D printing of a polydimethylsiloxane/polytetrafluoroethylene composite elastomer and its application in a triboelectric nanogeneratorACS Appl. Mater. Interfaces1257441–9
[120] [120] Chen Set al2018 A single integrated 3D-printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronicsAdv. Funct. Mater.281805108
[121] [121] Zhang C, Zhang L, Bao B, Ouyang W Y, Chen W Y, Li Q T and Li D C 2023 Customizing triboelectric nanogenerator on everyday clothes by screen-printing technology for biomechanical energy harvesting and human-interactive applicationsAdv. Mater. Technol.82201138
[122] [122] Liu C R, Li J Q, Che L F, Chen S Q, Wang Z K and Zhou X F 2017 Toward large-scale fabrication of triboelectric nanogenerator (TENG) with silk-fibroin patches film via spray-coating processNano Energy41359–66
[123] [123] Cho E, Kim K N, Yong H, Choi W J, Park J S and Lee S J 2022 Highly transparent and water-repellent hierarchical-wrinkled-architecture triboelectric nanogenerator with ultrathin plasma-polymer-fluorocarbon film for artificial triboelectric skinNano Energy103107785
[124] [124] Wong C K, Qiang X L, Mller A H E and Grschel A H 2020 Self-assembly of block copolymers into internally ordered microparticlesProg. Polym. Sci.102101211
[125] [125] Zhu C Q, Xiang C, Wu M W, Yu C N, Dai S, Sun Q J, Zhou T M, Wang H and Xu M Y 2024 Recent advances in wave-driven triboelectric nanogenerators: from manufacturing to applicationsInt. J. Extrem. Manuf.6062009
[126] [126] Kurakula A, Graham S A, Paranjape M V and Yu J S 2023 Triboelectric film with electrochemical surface modification for multiple mechanical energy harvesting with high storage efficiency and sensing applicationsACS Appl. Electron. Mater.52073–81
[127] [127] Huang L B, Xu W, Bai G X, Wong M C, Yang Z B and Hao J H 2016 Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogeneratorNano Energy3036–42
[128] [128] Zheng Q, Dai X, Wu Y, Liang Q, Wu Y, Yang J, Dong B, Gao G, Qin Q and Huang L-B 2023 Self-powered high-resolution smart insole system for plantar pressure mappingBMEMat1e12008
[129] [129] Seong J, Bak B U, Lee D, Jin J D and Kim J 2024 Tribo-piezoelectric synergistic BaTiO3/PDMS micropyramidal structure for high-performance energy harvester and high-sensitivity tactile sensingNano Energy122109264
[130] [130] Chung M H, Yoo S, Jung W N, Jeong H and Yoo K H 2023 Self-powered airflow sensor based on energy harvesting of ventilation air in buildingsAdv. Fiber Mater.51788–98
[131] [131] Li Z K, Yu A F, Zhang Q and Zhai J Y 2024 Recent advances in fabricating high-performance triboelectric nanogenerators via modulating surface charge densityInt. J. Extrem. Manuf.6052003
[132] [132] Lone S A, Lim K C, Kaswan K, Chatterjee S, Fan K P, Choi D, Lee S, Zhang H L, Cheng J and Lin Z H 2022 Recent advancements for improving the performance of triboelectric nanogenerator devicesNano Energy99107318
Get Citation
Copy Citation Text
Han Jiaxin, Dai Xingyi, Huang Long-Biao, Hao Jianhua. Optimizing electrical output performance of triboelectric nanogenerators by micro-/nano-morphology design and fabrication[J]. International Journal of Extreme Manufacturing, 2025, 7(3): 32008
Category:
Received: Aug. 9, 2024
Accepted: Sep. 29, 2025
Published Online: Sep. 29, 2025
The Author Email: