Laser & Optoelectronics Progress, Volume. 57, Issue 22, 221021(2020)

Breast Cancer Histopathological Image Classification Based on Improved ResNeXt

Xuemeng Niu1, Xiaoqi Lü1,2、*, Yu Gu1,3, Baohua Zhang1, Ming Zhang1,4, Guoyin Ren1, and Jing Li1
Author Affiliations
  • 1Key Laboratory of Pattern Recognition and Intelligent Image Processing, College of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 0 14010, China
  • 2Institute of Information Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 0 10051, China
  • 3College of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
  • 4College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning 116026, China
  • show less
    Figures & Tables(19)
    Flow chart of our algorithm
    Working principle of OctConv transition layer
    Convolution with different structures. (a) Traditional convolution; (b) HetConv
    Flow chart of HetConv algorithm
    Structure of ResNeXt module
    Image of the Benign class in the verification set. (a) Whole image; (b) small patches
    Principle of the majority voting algorithm
    Training accuracy and verification accuracy of the ResNeXt model
    Image of partially judged wrong. (a) Invasive; (b) InSitu1; (c) InSitu2
    Training accuracy and verification accuracy of the ResNeXt+OctConv model
    Image of the Normal class
    Training accuracy and verification accuracy of the ResNeXt+OctConv+HetConv model
    • Table 1. Image-level confusion matrix of ResNeXt

      View table

      Table 1. Image-level confusion matrix of ResNeXt

      BenignInSituInvasiveNormal
      Benign18113
      InSitu11840
      Invasive01141
      Normal10116
    • Table 2. Image-level confusion matrix of ResNeXt+OctConv model

      View table

      Table 2. Image-level confusion matrix of ResNeXt+OctConv model

      BenignInSituInvasiveNormal
      Benign18101
      InSitu11830
      Invasive00170
      Normal11019
    • Table 3. Image-level confusion matrix of ResNeXt +OctConv+HetConv model

      View table

      Table 3. Image-level confusion matrix of ResNeXt +OctConv+HetConv model

      BenignInSituInvasiveNormal
      Benign18101
      InSitu01820
      Invasive00180
      Normal21019
    • Table 4. Image level confusion matrix of Ref. [4]

      View table

      Table 4. Image level confusion matrix of Ref. [4]

      BenignInSituInvasiveNormal
      Benign23114
      InSitu12021
      Invasive01220
      Normal13020
    • Table 5. Recall,precision and accuracy of two methods unit: %

      View table

      Table 5. Recall,precision and accuracy of two methods unit: %

      MethodRecallPrecisionAccuracy
      OurmethodBenign90.0090.0091.25
      InSitu90.0090.00
      Invasive90.00100.00
      Normal95.0086.36
      Ref. [4]Benign92.0079.3185.00
      InSitu80.0083.33
      Invasive88.0095.65
      Normal80.0083.33
    • Table 6. Recognition rate of different models unit: %

      View table

      Table 6. Recognition rate of different models unit: %

      MethodResNeXtResNeXt+OctConvResNeXt+OctConv+HetConv P=2(P=4)Ref.[4]
      Patch-accuracy71.9281.7383.04(78.12)79.00
      Image-accuracy82.5090.0091.25(88.75)85.00
    • Table 7. Experimental results obtained by different methods unit: %

      View table

      Table 7. Experimental results obtained by different methods unit: %

      MethodAccuracy
      Traditional machine learning[1]80.00-85.00
      AlexNet[2]89.60
      CNN+SVM[3]77.80
      Inception-Transfer learning[4]85.00
      LightGBM[5]87.20
      Hierarchical ResNeXt[6]99.00
      The contestants (ICIAR2018)80.00-91.00
      Our method91.25
    Tools

    Get Citation

    Copy Citation Text

    Xuemeng Niu, Xiaoqi Lü, Yu Gu, Baohua Zhang, Ming Zhang, Guoyin Ren, Jing Li. Breast Cancer Histopathological Image Classification Based on Improved ResNeXt[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221021

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Apr. 3, 2020

    Accepted: Apr. 27, 2020

    Published Online: Nov. 12, 2020

    The Author Email: Xiaoqi Lü (lxiaoqi@imut.edu.cn)

    DOI:10.3788/LOP57.221021

    Topics