Journal of Synthetic Crystals, Volume. 51, Issue 5, 865(2022)
Doping, Surface/Interface Regulation and Properties of Nanocrystalline Diamond Films
[1] [1] ALEKSOV A, DENISENKO A, KOHN E. First epitaxial pnp bipolar transistor on diamond with deep nitrogen donor[J]. Electronics Letters, 1999, 35(20): 1777.
[2] [2] PRINS J F. Nitrogen-related n-type conduction with low thermal activation in diamond[J]. Semiconductor Science and Technology, 2001, 16(9): L50-L52.
[3] [3] SQUE S J, JONES R, GOSS J P, et al. Shallow donors in diamond: chalcogens, pnictogens, and their hydrogen complexes[J]. Physical Review Letters, 2004, 92(1): 017402.
[4] [4] SHAO, WANG, ZHANG, et al. First principles calculation of lithium-phosphorus co-doped diamond[J]. Condensed Matter Physics, 2013, 16(1): 13702.
[5] [5] TANG L, YUE R F, WANG Y. N-type B-S co-doping and S doping in diamond from first principles[J]. Carbon, 2018, 130: 458-465.
[6] [6] GUPTA S, WEINER B R, MORELL G. Room-temperature electrical conductivity studies of sulfur-modified microcrystalline diamond thin films[J]. Applied Physics Letters, 2003, 83(3): 491-493.
[7] [7] BELOBORODOV I S, ZAPOL P, GRUEN D M, et al. Transport properties of n-type ultrananocrystalline diamond films[J]. Physical Review B, 2006, 74(23): 235434.
[8] [8] WILLIAMS O A, CURAT S, GERBI J E, et al. n-type conductivity in ultrananocrystalline diamond films[J]. Applied Physics Letters, 2004, 85(10): 1680-1682.
[9] [9] BIRRELL J, GERBI J E, AUCIELLO O, et al. Bonding structure in nitrogen doped ultrananocrystalline diamond[J]. Journal of Applied Physics, 2003, 93(9): 5606-5612.
[10] [10] DAI Y, DAI D D, YAN C X, et al. n-type electric conductivity of nitrogen-doped ultrananocrystalline diamond films[J]. Physical Review, B Condensed Matter and Materials Physics, 2005, 71(7): 75421.1-75421.5.
[11] [11] WILLIAMS O A. Ultrananocrystalline diamond for electronic applications[J]. Semiconductor Science and Technology, 2006, 21(8): R49-R56.
[12] [12] SALGADO-MEZA M, MARTNEZ-RODRGUEZ G, TIRADO-CANT P, et al. Synthesis and properties of electrically conductive/nitrogen grain boundaries incorporated ultrananocrystalline diamond (N-UNCD) thin films grown by microwave plasma chemical vapor deposition (MPCVD)[J]. Applied Sciences, 2021, 11(18): 8443.
[13] [13] HU X J, YE J S, HU H, et al. Phosphorus ion implantation and annealing induced n-type conductivity and microstructure evolution in ultrananocrystalline diamond films[J]. Applied Physics Letters, 2011, 99(13): 131902.
[14] [14] HU X J, YE J S, LIU H J, et al. n-type conductivity and phase transition in ultrananocrystalline diamond films by oxygen ion implantation and annealing[J]. Journal of Applied Physics, 2011, 109(5): 053524.
[15] [15] DAS D, KANDASAMI A, RAMACHANDRA RAO M S. Realization of highly conducting n-type diamond by phosphorus ion implantation[J]. Applied Physics Letters, 2021, 118(10): 102102.
[16] [16] LIN S C, YEH C J, KURIAN J, et al. The microstructural evolution of ultrananocrystalline diamond films due to P ion implantation process: the annealing effect[J]. Journal of Applied Physics, 2014, 116(18): 183701.
[17] [17] JOSEPH P T, TAI N H, NIU H, et al. Structural modification and enhanced field emission on ultrananocrystalline diamond films by nitrogen ion implantation[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1812-1816.
[18] [18] CHEN Y C, ZHONG X Y, KABIUS B, et al. Improvement of field emission performance on nitrogen ion implanted ultrananocrystalline diamond films through visualization of structure modifications[J]. Diamond and Related Materials, 2011, 20(2): 238-241.
[19] [19] CHEN W E, CHEN C K, YEH C J, et al. Evolution of granular structure and the enhancement of electron field emission properties of nanocrystalline and ultrananocrystalline diamond films due to plasma treatment process[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28726-28735.
[20] [20] SANKARAN K J, KURIAN J, CHEN H C, et al. Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma[J]. Journal of Physics D: Applied Physics, 2012, 45(36): 365303.
[21] [21] SANKARAN K J, CHEN H C, PANDA K, et al. Enhanced electron field emission properties of conducting ultrananocrystalline diamond films after Cu and Au ion implantation[J]. ACS Applied Materials & Interfaces, 2014, 6(7): 4911-4919.
[22] [22] PANDA K, HYEOK J J, PARK J Y, et al. Nanoscale investigation of enhanced electron field emission for silver ion implanted/post-annealed ultrananocrystalline diamond films[J]. Scientific Reports, 2017, 7: 16325.
[23] [23] PANDA K, INAMI E, SUGIMOTO Y, et al. Straight imaging and mechanism behind grain boundary electron emission in Pt-doped ultrananocrystalline diamond films[J]. Carbon, 2017, 111: 8-17.
[24] [24] SHEN Y Y, ZHANG Y X, ZHANG C, et al. The effect of Cu ion implantation and post-annealing on surface morphology and electron field emission in ultrananocrystalline diamond[J]. Journal of Alloys and Compounds, 2017, 709: 8-15.
[25] [25] HU X J, CHEN C K, LU S H. High mobility n-type conductive ultrananocrystalline diamond and graphene nanoribbon hybridized carbon films[J]. Carbon, 2016, 98: 671-680.
[26] [26] XU H, YE H T, COATHUP D, et al. An insight of p-type to n-type conductivity conversion in oxygen ion-implanted ultrananocrystalline diamond films by impedance spectroscopy[J]. Applied Physics Letters, 2017, 110(3): 033102.
[27] [27] LU S H, FAN D, CHEN C K, et al. Ground-state structure of oxidized diamond (100) surface: an electronically nearly surface-free reconstruction[J]. Carbon, 2020, 159: 9-15.
[28] [28] XU H, LIU J J, YE H T, et al. Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films[J]. Chinese Physics B, 2018, 27(9): 096104.
[29] [29] CHEN C K, TANG B J, XU H, et al. Low-defect nanodiamonds and graphene nanoribbons enhanced electron field emission properties in ultrananocrystalline diamond films[J]. ACS Applied Electronic Materials, 2021, 3(4): 1648-1655.
[30] [30] JIANG M Y, MA W C, HAN S J, et al. Microstructure and electrochemical properties of nanocrystalline diamond and graphene hybridized films[J]. Journal of Applied Physics, 2020, 127(1): 015301.
[31] [31] JIANG M Y, ZHANG Z Q, CHEN C K, et al. High efficient oxygen reduced reaction electrodes by constructing vertical graphene sheets on separated papillary granules formed nanocrystalline diamond films[J]. Carbon, 2020, 168: 536-545.
[32] [32] JIANG M Y, CHEN C K, WANG P, et al. Diamond formation mechanism in chemical vapor deposition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(16): e2201451119.
[33] [33] YOLSHINA V A, YOLSHINA L A, ELTERMAN V A, et al. Synthesis of and characterization of freestanding, high-hierarchically structured graphene-nanodiamond films[J]. Materials & Design, 2017, 135: 343-352.
[34] [34] ZHAI Z F, HUANG N, ZHUANG H, et al. A diamond/graphite nanoplatelets electrode for anodic stripping voltammetric trace determination of Zn(Ⅱ), Cd(Ⅱ), Pb(Ⅱ) and Cu(Ⅱ)[J]. Applied Surface Science, 2018, 457: 1192-1201.
[35] [35] ACHATZ P, BUSTARRET E, MARCENAT C, et al. Metal-insulator transition and superconductivity in highly boron-doped nanocrystalline diamond films[J]. Physica Status Solidi (a), 2009, 206(9): 1978-1985.
[36] [36] GU S S, HU X J. Enhanced p-type conduction of B-doped nanocrystalline diamond films by high temperature annealing[J]. Journal of Applied Physics, 2013, 114(2): 023506.
[37] [37] CHEN C K, FAN D, XU H, et al. Monoatomic tantalum induces ordinary-pressure phase transition from graphite to n-type diamond[J]. Carbon, 2022, 196: 466-473.
[38] [38] JIANG M Y, YU H, LI X, et al. Thermal oxidation induced high electrochemical activity of boron-doped nanocrystalline diamond electrodes[J]. Electrochimica Acta, 2017, 258: 61-70.
[39] [39] RYL J, CIESLIK M, ZIELINSKI A, et al. High-temperature oxidation of heavy boron-doped diamond electrodes: microstructural and electrochemical performance modification[J]. Materials, 2020, 13(4): 964.
[40] [40] MIAO D T, LI Z S, CHEN Y H, et al. Preparation of macro-porous 3D boron-doped diamond electrode with surface micro structure regulation to enhance electrochemical degradation performance[J]. Chemical Engineering Journal, 2022, 429: 132366.
[41] [41] XU J, YANG N J, HEUSER S, et al. Achieving ultrahigh energy densities of supercapacitors with porous titanium carbide/boron-doped diamond composite electrodes[J]. Advanced Energy Materials, 2019, 9(17): 1803623.
Get Citation
Copy Citation Text
HU Xiaojun, ZHENG Yuhao, CHEN Chengke, LU Shaohua, JIANG Meiyan, LI Xiao. Doping, Surface/Interface Regulation and Properties of Nanocrystalline Diamond Films[J]. Journal of Synthetic Crystals, 2022, 51(5): 865
Category:
Received: Feb. 21, 2022
Accepted: --
Published Online: Jul. 7, 2022
The Author Email: Xiaojun HU (huxj@zjut.edu.cn)
CSTR:32186.14.