Laser Technology, Volume. 48, Issue 6, 867(2024)
Localized surface plasmon resonance enhanced MoS2 photodetector
[2] [2] TAFFELLI A, DIR S, QUARANTA A, et al. MoS2based photodetectors: A review[J]. Sensors, 2021, 21(8): 2758.
[3] [3] WADHWA R, AGRAWAL A, KUMAR M. A strategic review of recent progress, prospects and challenges of MoS2-based photodetectors[J]. Journal of Physics, 2021, D55(6): 063002.
[4] [4] KHAN S, KHAN A, AZADMANJIRI J, et al. 2D heterostructures for highly efficient photodetectors: From advanced synthesis to characterizations, mechanisms, and device applications[J]. Advanced Photonics Research, 2022, 3(8): 2100342.
[5] [5] SHARMA M, AGGARWAL P, SINGH A, et al. Flexible, transparent, and broadband trilayer photodetectors based on MoS2/WS2nanostructures[J]. ACS Applied Nano Materials, 2022, 5(9): 13637-13648.
[6] [6] HAN X N, WEN P T, ZHANG L, et al. A polarization-sensitive self-powered photodetector based on a P-WSe2/TaIrTe4/N-MoS2 van der Waals heterojunction[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61544-61554.
[7] [7] WANG H Y, LI Z X, LI D Y, et al. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors[J]. Advanced Functional Materials, 2021, 31(30): 2103106.
[8] [8] QIN Sh R, XU H L, LIU M J, et al. Enhanced visible to near-infrared photodetectors made from MoS2-based mixed-dimensional structures[J]. Applied Surface Science, 2022, 585: 152594.
[9] [9] WANG T J, ANDREWS K, BOWMAN A, et al. High-performance WSe2 phototransistors with 2D/2D Ohmic contacts[J]. Nano Letters, 2018, 18(5): 2766-2771.
[10] [10] LI Sh D, HE Zh B, KE I, et al. Ultra-sensitive self-powered photodetector based on vertical MoTe2/MoS2 heterostructure[J]. Applied Physics Express, 2020, 13(1): 015007.
[12] [12] ZHANG M R, ZENG G, WU G J, et al. Van der Waals integrated plasmonic Au array for self-powered MoS2 photodetector[J]. Applied Physics Letters, 2023, 122(25): 253503.
[13] [13] XIE Y, ZHANG B, WANG Sh X, et al. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717 nm[J]. Advanced Materials, 2017, 29(17): 1605972.
[14] [14] WANG W Zh, ZENG X B, WARNER J, et al. Photoresponse-bias modulation of a high-performance MoS2 photodetector with a unique vertically stacked 2H-MoS2/1T@2H-MoS2 structure[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 33325-33335.
[15] [15] LIN Y Ch, DUMCENCO D O, HUANG Y Sh, et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2[J]. Nature Nanotechnology, 2014, 9(5): 391-396.
[16] [16] LIANG B W, CHANG W H, HUANG Ch Sh, et al.Self-powered broadband photodetection enabled by facile CVD-grown MoS2/GaN heterostructures[J]. Nanoscale, 2023, 15: 18233-18240.
[17] [17] CHEN T X, ZHOU Y Q, SHENG Y W, et al. Hydrogen-assisted growth of large-area continuous films of MoS2 on monolayer graphene[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7304-7314.
[18] [18] HE Q Y, ZENG Zh Y, YIN Z Y, et al. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications[J]. Small, 2012, 8(19): 2994-2999.
[19] [19] EDA G, YAMAGUCHI H, VOIRY D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12): 5111-5116.
[20] [20] LIU N, KIM P, KIM J H, et al. Large-area atomically thin MoS2nanosheets prepared using electrochemical exfoliation[J]. ACS Nano, 2014, 8(7): 6902-6910.
[21] [21] PARK M J, PARK K, KO H. Near-infrared photodetector achieved by chemically-exfoliated multilayered MoS2 flakes[J]. Applied Surface Science, 2018, 448: 64-70.
[22] [22] SUN B, KONG L X, LI G L, et al. Fully integrated photodetector array based on an electrochemically exfoliated, atomically thin MoS2 film for photoimaging[J]. ACS Applied Electronic Materials, 2022, 4(3): 1010-1018.
[23] [23] LIN Zh Y, LIU Y, HALIM U, et al. Solution-processable 2D semiconductors for high-performance large-area electronics[J]. Nature, 2018, 562(7726): 254-258.
[24] [24] LI G, SONG Y D, FENG S Y, et al. Improved optoelectronic performance of MoS2 photodetector via localized surface plasmon resonance coupling of double-layered Au nanoparticles with sandwich structure[J]. ACS Applied Electronic Materials, 2022, 4(4): 1626-1632.
[25] [25] XIAO P, KIM J H, SEO S. Simple fabrication of photodetectors based on MoS2 nanoflakes and Ag nanoparticles[J]. Sensors, 2022, 22(13): 4695.
[26] [26] HUANG Y X, ZOU J, KANG Zh L, et al. Near-infrared photodetectors based on self-assembled plasmonic architecture for computational single-pixel imaging[J]. IEEE Transactions on Electron Devices, 2024, 71(1): 670-675.
[27] [27] ZOU J, HUANG Y, WANG W, et al. Plasmonic MXene nanoparticle-enabled high-performance two-dimensional MoS2 photodetectors[J]. ACS Applied Materials &Interfaces, 2022, 14(6): 8243-8250.
[28] [28] XU H, ZHU J, ZOU G, et al. Spatially bandgap-graded MoS(2(1-x))Se(2x) homojunctions for self-powered visible-near-infrared phototransistors[J]. Nano-Micro Letters, 2020, 12(1): 26.
[29] [29] WANG F, ZHANG T, XIE R Zh, et al. How to characterize figures of merit of two-dimensional photodetectors[J]. Nature Communications, 2023, 14(1): 2224.
[30] [30] WADHWA R, KAUR D, ZHANG Y C, et al.Fast response and high-performance UV-C to NIR broadband photodetector based on MoS2/a-Ga2O3heterostructures and impact of band-alignment and charge carrier dynamics[J]. Applied Surface Science, 2023, 632: 157597.
[31] [31] JING W, DING N, LI L, et al. Ag nanoparticles modified large area monolayer MoS2 phototransistors with high responsivity[J]. Optics Express, 2017, 25(13): 14565-14574.
[32] [32] KIM D W, LEEM J Y. Synthesis of interface modified MoS2/ZnO heterostructure via simple hydrothermal method and their enhanced UV photodetection characteristics with ultrafast photoresponse speed[J]. Materials Research Bulletin, 2022, 150: 111767.
[33] [33] KIM J, KIM S, CHO YS, et al. Solution-processed MoS2 film with functional interfaces via precursor-assisted chemical welding[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12221-12229.
[34] [34] WANG H D, ZENG Y H, MENG F X, et al. Interlayer sensitized van der Waals heterojunction photodetector with enhanced performance[J]. Nano Research, 2023, 16(7): 10537-10544.
Get Citation
Copy Citation Text
CHENG Jiabao, TANG Daxiu, XIE Ying, GU Chenjie, LIU Zijun, LU Pengfei, SHEN Xiang. Localized surface plasmon resonance enhanced MoS2 photodetector[J]. Laser Technology, 2024, 48(6): 867
Category:
Received: Dec. 27, 2023
Accepted: Feb. 13, 2025
Published Online: Feb. 13, 2025
The Author Email: GU Chenjie (guchenjie@nbu.edu.cn)