Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1837017(2024)

Pigment Classification Method of Mural Multi-Spectral Image Based on Multi-Scale Superpixel Segmentation

Yamin Chen1, Ke Wang1, Zhan Wang2, Huiqin Wang1、*, Yuan Li3, and Gang Zhen2
Author Affiliations
  • 1College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi , China
  • 2Shaanxi Institute for the Preservation of Cultural Heritage, Xi'an 710075, Shaanxi , China
  • 3Xi'an Museum, Xi'an 710074, Shaanxi , China
  • show less
    Figures & Tables(16)
    Schematic diagram of multi-scale superpixel segmentation pigment classification method
    Superpixel segmentation effect on mural pseudo color images at different scales. (a) K=50; (b) K=100; (c) K=200; (d) K=500
    Simulated mural multispectral imaging data. (a) Data cube; (b) multispectral imaging data for each channel
    Simulated mural image. (a) Pseudo color chart; (b) true value chart
    Comparison diagram of pseudo color effects. (a) OIF; (b) MI; (c) PCA; (d) ABS
    Simulated mural superpixel segmentation results. (a) SLIC; (b) SLIC0; (c) SNIC; (d) NMI_SLIC; (e) LSC; (f) proposed
    Impact of different scale numbers on classification accuracy of proposed method
    Classification results comparison of different algorithms on simulated murals. (a) MDC; (b) SID; (c) SAM; (d) SVM;(e) SuperPCA; (f) SLIC_SVM; (g) MSP_SSA; (h) proposed
    Real mural data. (a) The 13th his holiness true color image; (b) multi spectral data of target area; (c) training set distribution
    Classification results of different comparison algorithms on real murals. (a) MDC; (b) SID; (c) SAM; (d) SVM; (e) SuperPCA; (f) SLIC_SVM; (g) MSP_SSA; (h) proposed
    • Table 1. Multispectral image band numbers and corresponding index table

      View table

      Table 1. Multispectral image band numbers and corresponding index table

      No.Band /nmIndexNo.Band /nmIndex
      Band 140017.9Band 966030.8
      Band 242025.8Band 1068030.9
      Band 346045.3Band 1170033.0
      Band 452030.2Band 1274028.3
      Band 554031.8Band 1378043.7
      Band 658046.7Band 1482032.3
      Band 762035.7Band 1586027.8
      Band 864039.2Band 1690024.8
    • Table 2. Performance evaluation of band selection methods

      View table

      Table 2. Performance evaluation of band selection methods

      IndexMethod
      OIFMIPCAABS
      AIE14.119314.135913.982614.1121
      ARE0.88880.43950.03980.8955
      ACC0.01330.12000.98830.0127
    • Table 3. Classificiation performance of proposed method at different superpixel segmentation scales

      View table

      Table 3. Classificiation performance of proposed method at different superpixel segmentation scales

      CategorySegmentation scale /%
      -4-3-2-101234
      Mercuric sulfide89.9478.9292.3894.1195.9466.2554.1169.0052.03
      Lazurite96.2696.2696.2696.2696.2696.2693.9693.6592.98
      Minium94.5094.5089.3393.7578.450.000.000.000.00
      Mineral green73.0784.2583.2378.2679.9375.2786.9071.6686.22
      Chrome yellow93.6097.7897.7897.7898.0097.4597.3197.5896.87
      Graphite79.0793.5594.2795.8495.3595.3095.1692.0589.55
      Background94.5899.8898.2599.1599.1597.9197.5295.2395.48
      AOA /%95.2397.1495.9197.9498.1497.8095.7695.5993.61
      AAA /%92.7993.5395.7695.6796.9395.1991.4992.2087.27
      Kappa0.9230.9550.9490.9490.9650.9450.9250.9230.912
    • Table 4. Comparison of classification accuracy of different algorithms

      View table

      Table 4. Comparison of classification accuracy of different algorithms

      CategoryClassification accuracy /%
      MDCSIDSAMSVMSuperPCASLIC_SVMSSA_SVMProposed
      Mercuric sulfide92.3793.5692.1696.8895.3695.9896.8099.17
      Lazurite82.3392.2389.5291.4694.8394.8092.9698.74
      Minium20.6985.7291.1787.5084.5975.5289.6895.43
      Mineral green50.2686.2687.3391.2892.3592.5687.4998.22
      Chrome yellow93.5696.3393.8798.4698.8598.5598.6799.41
      Graphite80.5291.3693.9792.4994.6094.4593.6398.75
      Background89.2293.4895.5894.1199.1299.5499.5799.81
      AOA /%69.4693.2389.7890.3693.5596.4690.4998.84
      AAA /%72.7091.2891.9493.1794.2493.0694.1298.50
      Kappa58.689.289.291.395.895.888.398.1
    • Table 5. Comparison of scales of subjective image evaluation

      View table

      Table 5. Comparison of scales of subjective image evaluation

      LevelAbsolute measurement scaleRelative measurement scale
      1Very goodThe best in the group
      2BetterBetter than the average in the group
      3GenerallyAverage in the group
      4PoorWorse than the average in the group
      5Very badWorst in the group
    • Table 6. Evaluation results of dual stimulation injury classification method

      View table

      Table 6. Evaluation results of dual stimulation injury classification method

      AlgorithmResult
      MDCVery bad
      SIDPoor
      SAMPoor
      SVMGenerally
      SuperPCABetter
      SLIC_SVMBetter
      MSP_SSABetter
      ProposedVery good
    Tools

    Get Citation

    Copy Citation Text

    Yamin Chen, Ke Wang, Zhan Wang, Huiqin Wang, Yuan Li, Gang Zhen. Pigment Classification Method of Mural Multi-Spectral Image Based on Multi-Scale Superpixel Segmentation[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1837017

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Feb. 5, 2024

    Accepted: Mar. 7, 2024

    Published Online: Sep. 14, 2024

    The Author Email: Huiqin Wang (hqwang@xauat.edu.cn)

    DOI:10.3788/LOP240671

    CSTR:32186.14.LOP240671

    Topics