Optoelectronic Technology, Volume. 44, Issue 2, 85(2024)

Development and Applications of Metamaterials

Wenxuan TANG and Tiejun CUI
Author Affiliations
  • State Key Laboratory of Millimeter Waves, Southeast University, Nanjing210096
  • show less
    References(92)

    [1] Veselago V G. The electrodynamics of substances with simultaneously negative values of ɛ and μ[J]. Soviet Physics Uspekhi, 10, 509-514(1968).

    [2] Pendry J B, Holden A J, Stewart W J et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 76, 4773-4776(1996).

    [3] Pendry J B, Holden A J, Robbins D J et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).

    [4] Pendry J B. Negative refraction makes a perfect lens[J]. Phys Rev Lett, 85, 3966(2000).

    [5] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 305, 788-792(2004).

    [6] Chen H, Ran L, Huang F J et al. Left-handed materials composed of only S-shaped resonators[J]. Physical Review E, 70(2004).

    [7] Schurig D, Mock J J, Smith D R. Electric-field-coupled resonators for negative permittivity metamaterials[J]. Applied Physics Letters, 88(2006).

    [8] Tang W X, Zhao H, Zhou X et al. Negative index material composed of meander line and srrs[J]. Progress in Electromagnetics Research B, 8, 103-114(2008).

    [9] Smith D R, Mock J J, Starr A F et al. Gradient index metamaterials[J]. Physical Review E, 71(2005).

    [10] Cui T J, Kong J A. Causality in the propagation of transient electromagnetic waves in a left-handed medium[J]. Physical Review B, 70, 165113(2004).

    [11] Cui T J, Kong J A. Time-domain electromagnetic energy in a frequency-dispersive left-handed medium[J]. Physical Review B, 70, 205106(2004).

    [12] Caloz C, Itoh T[M]. Electromagnetic metamaterials: Transmission line theory and microwave applications(2004).

    [13] Eleftheriades G V, Balmain K G[M]. Negative-refraction metamaterials(2005).

    [14] Cui T J, Cheng Q, Huang Z Z et al. Electromagnetic wave localization using a left-handed transmission-line superlens[J]. Physical Review B, 72(2005).

    [15] Cui T J, Lin X Q, Cheng Q et al. Experiments on evanescent-wave amplification and transmission using metamaterial structures[J]. Physical Review B, 73, 245119(2006).

    [16] Liu R, Zhao B, Lin X Q et al. Experimental observation of evanescent-wave amplification and propagation in microwave regime[J]. Applied Physics Letters, 89, 221919(2006).

    [17] Liu R, Zhao B, Lin X Q et al. Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model[J]. Physical Review B, 75, 125118(2007).

    [18] Yao Y H, Cui T J, Cheng Q et al. Realization of a super waveguide for high-power-density generation and transmission using right- and left-handed transmission-line circuits[J]. Physical Review E, 76(2007).

    [19] Lin X Q, Liu R P, Yang X M et al. Arbitrarily dual-band components using simplified structures of conventional CRLH TLs[J]. IEEE Transactions on Microwave Theory and Techniques, 54, 2902-2909(2006).

    [20] Lin X Q, Ma H F, Bao D et al. Design and analysis of super-wide bandpass filters using a novel compact meta-structure[J]. IEEE Transactions on Microwave Theory and Techniques, 55, 747-753(2007).

    [21] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 312, 1780(2006).

    [22] Leonhardt U. Optical conformal mapping[J]. Science, 312, 1777-1780(2006).

    [23] Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).

    [24] Liu R, Ji C, Mock J J et al. Broadband ground-plane cloak[J]. Science, 323, 366-369(2009).

    [25] Ergin T, Stenger N, Brenner P et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 328, 337-339(2010).

    [26] Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nature Communications, 1, 21(2010).

    [27] Genov D A, Zhang S, Zhang X. Mimicking celestial mechanics in metamaterials[J]. Nature Physics, 5, 687-692(2009).

    [28] Cheng Q, Cui T J, Jiang W X et al. An omnidirectional electromagnetic absorber made of metamaterials[J]. New Journal of Physics, 12(2010).

    [29] Ma H F, Cui T J. Three-dimensional broadband and broad-angle transformation-optics lens[J]. Nature Communications, 1, 124(2010).

    [30] Jiang W X, Qiu C W, Han T et al. Creation of ghost illusions using wave dynamics in metamaterials[J]. Advanced FunctionaL Materials, 23, 4028-4034(2013).

    [31] Yu N, Genevet P, Kats M A et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 334, 333-7(2011).

    [32] Sun S, He Q, Xiao S et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Mater, 11, 426-431(2012).

    [33] Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: Tailoring wave fronts with reflectionless sheets[J]. Phys Rev Lett, 197401(2013).

    [34] Chen K, Feng Y, Monticone F et al. A reconfigurable active huygens' metalens[J]. Adv Mater, 29, 1606422(2017).

    [35] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [36] Huang L, Chen X, Mühlenbernd H et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 12, 5750-5755(2012).

    [37] Cui T J Cui, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials, and programmable metamaterials[J]. Light: Science and Applications, 3(2014).

    [38] Liu S, Cui T J, Zhang L et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Advanced Science, 3, 1600156(2016).

    [39] Cui T J, Liu S, Li L L. Information entropy of coding metasurface[J]. Light: Science & Applications, 5, e16172-e16172(2016).

    [40] Wu R Y, Shi C B, Liu S et al. Addition theorem for digital coding metamaterials[J]. Advanced Optical Materials, 6, 1701236(2018).

    [41] Zhao J, Yang X, Dai J Y et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 6, 231-238(2019).

    [42] Zhang L, Chen X Q, Liu S et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 9, 4334(2018).

    [43] Ho C P, Pitchappa P, Lee C. Digitally reconfigurable binary coded terahertz metamaterial with output analogous to NOR and AND[J]. Journal of Applied Physics, 119, 1-2(2016).

    [44] Li S Q, Xu X, Maruthiyodan Veetil R et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 364, 1087-1090(2019).

    [45] Manjappa M, Pitchappa P, Singh N et al. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies[J]. Nature Communications, 9, 4056(2018).

    [46] Moccia M, Liu S, Wu R Y et al. Coding metasurfaces for diffuse scattering: Scaling laws, bounds, and suboptimal design[J]. Advanced Optical Materials, 5, 1700455(2017).

    [47] Yang H, Yang F, Xu S et al. A 1-bit 10×10 reconfigurable reflectarray antenna: Design, optimization, and experiment[J]. IEEE Transactions on Antennas and Propagation, 64, 2246-2254(2016).

    [49] Li L, Jun Cui T, Ji W et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 8, 197(2017).

    [50] Li Y B, Li L L, Xu B B et al. Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging[J]. Scientific Reports, 6, 23731(2016).

    [51] Li L, Hurtado M, Xu F et al. A survey on the low dimensional-model-based electromagnetic imaging[J]. Foundations and Trends® in Signal Processing, 12, 107-199(2018).

    [52] Wan X, Qi M Q, Chen T Y et al. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface[J]. Scientific Reports, 6, 1-8(2016).

    [53] Silva A, Monticone F, Castaldi G et al. Performing mathematical operations with metamaterials[J]. Science, 343, 160-163(2014).

    [54] Tang W, Chen M Z, Chen X et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 20, 421-439(2021).

    [55] Tang W, Chen M Z, Dai J Y et al. Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design[J]. IEEE Wireless Communications, 27, 180-187(2020).

    [56] Pendry J B, Martin-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces[J]. Science, 305, 847-8(2004).

    [57] Chen Y, Song Z, Li Y et al. Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves[J]. Optics Express, 14, 13021-13029(2006).

    [58] Gan Q, Fu Z, Ding Y J et al. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures[J]. Phys Rev Lett, 100, 256803(2008).

    [59] Hibbins A P, Evans B R, Sambles J R. Experimental verification of designer surface plasmons[J]. Science, 308, 670-672(2005).

    [60] Maier S A, Andrews S R, Martín-Moreno L et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires[J]. Physical Review Letters, 97, 176805(2006).

    [61] Wang K, Mittleman D M. Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range[J]. Physical Review Letters, 96, 157401(2006).

    [62] Williams C R, Andrews S R, Maier S A et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces[J]. Nature Photonics, 2, 175-179(2008).

    [63] Zhou Y J, Jiang Q, Cui T J. Bidirectional bending splitter of designer surface plasmons[J]. Applied Physics Letters, 99, 111904(2011).

    [64] Shen X, Cui T J, Martin-Cano D et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the National Academy of Sciences, 110, 40-45(2012).

    [65] Shen L, Chen X, Zhong Y, Agarwal K. Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires[J]. Physical Review B, 77(2008).

    [66] Jiang T, Shen L, Zhang X et al. High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces[J]. Progress in Electromagnetics Research M, 8, 91-102(2009).

    [67] Liu L, Li Z, Gu C et al. Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films[J]. Journal of Applied Physics, 116(2014).

    [68] Wu J J, Hou D J, Liu K et al. Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons[J]. Optics Express, 22, 26777-26787(2014).

    [69] Zhang W, Zhu G, Sun L et al. Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation[J]. Applied Physics Letters, 106(2015).

    [70] Zhang D, Zhang K, Wu Q et al. High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies[J]. Optics Express, 25, 2121-2129(2017).

    [71] Zhou Y J, Xiao Q X. Electronically controlled rejections of spoof surface plasmons polaritons[J]. Journal of Applied Physics, 121, 123109(2017).

    [72] Cheng Q, Chen T, Yu D et al. Flexibly designed spoof surface plasmon waveguide array for topological zero-mode realization[J]. Optics Express, 26, 31636-31647(2018).

    [73] Zhu Z, Garcia-Ortiz C E, Han Z et al. Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect[J]. Applied Physics Letters, 03(2013).

    [74] Bai X, Qu S W, Yi H. Applications of spoof planar plasmonic waveguide to frequency-scanning circularly polarized patch array[J]. Journal of Physics D: Applied Physics, 47, 325101(2014).

    [75] Liu X Y, Feng Y J, Chen K et al. Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures[J]. Optics Express, 22, 20107-20116(2014).

    [76] Zhang H C, Liu S, Shen X et al. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies[J]. Laser & Photonics Reviews, 9, 83-90(2014).

    [77] Zhou Y J, Yang B J. A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system[J]. Optics Express, 22, 21589-21599(2014).

    [78] Liang Y, Yu H, Zhang H C et al. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS[J]. Scientific Reports, 5, 14853(2015).

    [79] Tang H H, Liu P K. Terahertz far-field superresolution imaging through spoof surface plasmons illumination[J]. Optics Letters, 40, 5822-5825(2015).

    [80] Yang J, Francescato Y, Chen D et al. Broadband molecular sensing with a tapered spoof plasmon waveguide[J]. Optics Express, 23, 8583-8589(2015).

    [81] Zhang H C, Fan Y, Guo J et al. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials[J]. ACS Photonics, 3, 139-146(2015).

    [82] Xu J J, Zhang H C, Zhang Q et al. Efficient conversion of surface-plasmon-like modes to spatial radiated modes[J]. Applied Physics Letters, 106(2015).

    [83] Kong G S, Ma H F, Cai B G et al. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide[J]. Scientific Reports, 6, 29600(2016).

    [84] Chen H, Ma H, Li Y et al. Wideband frequency scanning spoof surface plasmon polariton planar antenna based on transmissive phase gradient metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 17, 463-467(2018).

    [85] Fan Y, Wang J, Li Y et al. Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface[J]. IEEE Transactions on Antennas and Propagation, 66, 203-208(2018).

    [86] Tang X L, Zhang Q, Hu S et al. Beam steering using momentum-reconfigurable goubau meta-line radiators[J]. Scientific Reports, 8, 11854(2018).

    [87] Liao D, Zhang Y, Wang H. Wide-angle frequency-controlled beam-scanning antenna fed by standing wave based on the cutoff characteristics of spoof surface plasmon polaritons[J]. IEEE Antennas and Wireless Propagation Letters, 17, 1238-1241(2018).

    [88] Lv X, Cao W, Zeng Z et al. A circularly polarized frequency beam-scanning antenna fed by a microstrip spoof spp transmission line[J]. IEEE Antennas and Wireless Propagation Letters, 17, 1329-1333(2018).

    [89] Shen X, Cui T J. Ultrathin plasmonic metamaterial for spoof localized surface plasmons[J]. Laser & Photonics Reviews, 8, 137-145(2014).

    [90] Zhang X, Cui T J. Single-particle dichroism using orbital angular momentum in a microwave plasmonic resonator[J]. ACS Photonics, 7, 3291-3297(2020).

    [91] Zhang X, Zhu J W, Cui T J. An ultracompact spoof surface plasmon sensing system for adaptive and accurate detection of gas using a smartphone[J]. Engineering, 35, 86-94(2024).

    [92] Zhang H C, Zhang L P, He P H et al. A plasmonic route for the integrated wireless communication of subdiffraction-limited signals[J]. Light Sci Appl, 9, 113(2020).

    Tools

    Get Citation

    Copy Citation Text

    Wenxuan TANG, Tiejun CUI. Development and Applications of Metamaterials[J]. Optoelectronic Technology, 2024, 44(2): 85

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 1, 2024

    Accepted: --

    Published Online: Jul. 19, 2024

    The Author Email:

    DOI:10.12450/j.gdzjs.202402001

    Topics