Journal of Synthetic Crystals, Volume. 53, Issue 4, 649(2024)

Upconversion Luminescence and Temperature Sensing Properties of High Thermal Stabilized CaGdAlO4∶Er3+/Yb3+ Phosphors

LI Yuqiang1, YANG Jian2, WANG Shuai2, ZHENG Jiyuan1, ZHAO Yan1, ZHOU Hengwei1, and LIU Yuxue2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(35)

    [1] [1] WANG X F, LIU Q, BU Y Y, et al. Optical temperature sensing of rare-earth ion doped phosphors[J]. RSC Advances, 2015, 5(105): 86219-86236.

    [2] [2] LIU Y, WANG Z X, MIAO K, et al. Research progress on near-infrared long persistent phosphor materials in biomedical applications[J]. Nanoscale Advances, 2022, 4(23): 4972-4996.

    [3] [3] DEDYULIN S, AHMED Z, MACHIN G. Emerging technologies in the field of thermometry[J]. Measurement Science and Technology, 2022, 33(9): 092001.

    [4] [4] WANG Q A, LIAO M, LIN Q M, et al. A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials[J]. Journal of Alloys and Compounds, 2021, 850: 156744.

    [5] [5] JAQUE D, VETRONE F. Luminescence nanothermometry[J]. Nanoscale, 2012, 4(15): 4301-4326.

    [6] [6] LI X X, BAO B T, HE X Y, et al. Optical temperature sensing with an Er3+, Yb3+ co-doped LaBMoO6 single crystal[J]. Journal of Materials Chemistry C, 2023, 11(7): 2494-2504.

    [7] [7] XU Z Q, CHEN L H, ZHANG L Q, et al. Yb/Er∶Cs2Ag(In/Bi)Cl6 lead-free double perovskite for dual-modal optical temperature sensing[J]. Journal of Luminescence, 2022, 248: 118996.

    [8] [8] CUI H Q, CAO Y Z, ZHANG Y H, et al. Upconversion luminescence thermal enhancement and emission color modulation of LiYGeO4∶Er3+/Yb3+ phosphors[J]. Journal of Alloys and Compounds, 2022, 927: 167107.

    [9] [9] WANG P F, LI K A, JIN Y C, et al. Spectral properties and high-efficiency broadband laser operation of Tm∶CaY0.9Gd0.1AlO4 crystal[J]. Optics & Laser Technology, 2023, 161: 109217.

    [10] [10] ZHANG N, WANG H Y, YIN Y Q, et al. Cracking mechanism and spectral properties of Er, Yb∶CaGdAlO4 crystals grown by the LHPG method[J]. CrystEngComm, 2020, 22(5): 955-960.

    [11] [11] LI X J, ZHANG Y, GENG D L, et al. CaGdAlO4∶Tb3+/Eu3+ as promising phosphors for full-color field emission displays[J]. Journal of Materials Chemistry C, 2014, 2(46): 9924-9933.

    [12] [12] HU Q Q, JIA Z T, TANG C, et al. The origin of coloration of CaGdAlO4 crystals and its effect on their physical properties[J]. CrystEngComm, 2017, 19(3): 537-545.

    [13] [13] PAN Z B, LOIKO P, SLIMI S, et al. Tm, Ho: Ca(Gd, Lu)AlO4 crystals: crystal growth, structure refinement and Judd-Ofelt analysis[J]. Journal of Luminescence, 2022, 246: 118828.

    [14] [14] MARTA MOLTENI L, PIRZIO F, MANZONI C, et al. Few-optical-cycle pulse generation based on a non-linear fiber compressor pumped by a low-energy Yb: CALGO ultrafast laser[J]. Optics Express, 2020, 28(9): 13714.

    [15] [15] PAN Z B, LOIKO P, SERRES J M, et al. “Mixed” Tm∶Ca(Gd, Lu)AlO4—a novel crystal for tunable and mode-locked 2 μm lasers[J]. Optics Express, 2019, 27(7): 9987.

    [16] [16] DI J Q, XU X D, XIA C T, et al. Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals[J]. Journal of Luminescence, 2014, 155: 101-107.

    [17] [17] ZHANG X Y, LIU Y X, ZHANG M, et al. Efficient deep ultraviolet to near infrared quantum cutting in Pr3+/Yb3+ codoped CaGdAlO4 phosphors[J]. Journal of Alloys and Compounds, 2018, 740: 595-602.

    [18] [18] ZHANG Y, LIU X M, LI X J, et al. Overcoming crystallographically imposed geometrical restrictions on the valence state of Eu in CaGdAlO4: realization of white light emission from singly-doped Eu phosphors[J]. Dalton Transactions, 2015, 44(17): 7743-7747.

    [19] [19] LI Y Q, YANG J A, WANG M W, et al. Tm3+/Yb3+ codoped CaGdAlO4 phosphors for wide-range optical temperature sensing[J]. Journal of Luminescence, 2022, 248: 118935.

    [20] [20] PERRELLA R V, SCHIAVON M A, PECORARO E, et al. Broadened band C-telecom and intense upconversion emission of Er3+/Yb3+ co-doped CaYAlO4 luminescent material obtained by an easy route[J]. Journal of Luminescence, 2016, 178: 226-233.

    [21] [21] LI X X, LI J T, XU X F, et al. Bi3+ assisted enhancement of photoluminescence and thermal sensing of Er3+/Yb3+ co-doped SrGdAlO4 phosphor with unusual stable color[J]. Ceramics International, 2021, 47(6): 8538-8544.

    [22] [22] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767.

    [23] [23] YUN X Y, ZHOU J, ZHU Y H, et al. Green up-conversion luminescence and optical thermometry of Yb3+/Er3+ co-doped LiLuW2O8 phosphor[J]. Journal of Physics and Chemistry of Solids, 2022, 163: 110545.

    [24] [24] ZHANG M L, ZHAI X S, LEI P P, et al. Selective enhancement of green upconversion luminescence from NaYF4∶Yb, Er microparticles through Ga3+ doping for sensitive temperature sensing[J]. Journal of Luminescence, 2019, 215: 116632.

    [25] [25] HU J S, BIAN X M, WANG R N, et al. Single red upconversion luminescence in β-Ba2ScAlO5∶Yb3+/Er3+ phosphor assisted by Ce3+ ions[J]. Journal of Luminescence, 2022, 246: 118832.

    [26] [26] LI M J, SU L B, CHEN X Y, et al. Effect of Yb3+ concentration on Er3+ doped CaF2 single crystal for temperature sensor applications[J]. Optics Communications, 2022, 520: 128488.

    [27] [27] LI D Y, WANG Y X, ZHANG X R, et al. Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3[J]. Optics Communications, 2012, 285(7): 1925-1928.

    [28] [28] LU H Y, YANG J S, HUANG D C, et al. Ultranarrow NIR bandwidth and temperature sensing of YOF∶Yb3+/Tm3+ phosphor in low temperature range[J]. Journal of Luminescence, 2019, 206: 613-617.

    [29] [29] AVRAM D, TISEANU C. Thermometry properties of Er, Yb-Gd2O2S microparticles: dependence on the excitation mode (cw versus pulsed excitation) and excitation wavelength (980 nm versus 1500 nm)[J]. Methods and Applications in Fluorescence, 2018, 6(2): 025004.

    [30] [30] ZHANG H J, DONG X B, JIANG L Y, et al. Comparative analysis of upconversion emission of LaF3∶Er/Yb and LaOF∶Er/Yb for temperature sensing[J]. Journal of Molecular Structure, 2020, 1206: 127665.

    [31] [31] HU C L, LEI L, WANG Y B, et al. Improved thermally coupled levels based temperature sensing performance by engineering host phonon energy[J]. Journal of Luminescence, 2022, 252: 119357.

    [32] [32] GAO W X, GE W Y, SHI J D, et al. A novel upconversion optical thermometers derived from non-thermal coupling levels of CaZnOS: Tm/Yb phosphors[J]. Journal of Solid State Chemistry, 2021, 297: 122063.

    [33] [33] ERDEM M, CANTURK S B, ERYUREK G. Upconversion Yb3+/Er3+∶La2Ti2O7 phosphors for solid-state lighting and optical thermometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 270: 120854.

    [34] [34] NEXHA A, CARVAJAL J J, PUJOL M C, et al. Lanthanide doped luminescence nanothermometers in the biological windows: strategies and applications[J]. Nanoscale, 2021, 13(17): 7913-7987.

    [35] [35] ZI Y Z, YANG Z W, XU Z, et al. A novel upconversion luminescence temperature sensing material: negative thermal expansion Y2Mo3O12∶Yb3+, Er3+ and positive thermal expansion Y2Ti2O7∶Yb3+, Er3+ mixed phosphor[J]. Journal of Alloys and Compounds, 2021, 880: 160156.

    Tools

    Get Citation

    Copy Citation Text

    LI Yuqiang, YANG Jian, WANG Shuai, ZHENG Jiyuan, ZHAO Yan, ZHOU Hengwei, LIU Yuxue. Upconversion Luminescence and Temperature Sensing Properties of High Thermal Stabilized CaGdAlO4∶Er3+/Yb3+ Phosphors[J]. Journal of Synthetic Crystals, 2024, 53(4): 649

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 1, 2023

    Accepted: --

    Published Online: Aug. 22, 2024

    The Author Email: Yuxue LIU (yxliu@nenu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics