Chinese Journal of Lasers, Volume. 51, Issue 16, 1602209(2024)

Simulation and Experimental Study on Laser Cleaning of Surface Paint Layer of Aluminum Alloy Skin for Civil Aircraft

Tiangang Zhang1, Yu Li1, Junhao Zou1, Zhiqiang Zhang1、*, and Yanan Liu2
Author Affiliations
  • 1School of Aviation Engineering, China Civil Aviation University, Tianjin 300300, China
  • 2School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang , China
  • show less
    Figures & Tables(27)
    Cross-section OM topography and diagram of composite paint layer. (a) OM topography; (b) diagram
    Working principle of laser paint removal system
    Schematics of laser processing. (a) Spot for single-pulse paint removal; (b) paint removal path by multi-pulse surface scanning
    Thermal weight loss experiment result of topcoat
    Finite element mesh model for single pulse laser paint removal
    Temperature field cloud map of paint removal surface at t=200 ns
    Temperature change of paint removal surface
    Temperature and thermal stress field cloud maps for paint removal surface at t=750 ns. (a) Temperature field cloud map; (b) thermal stress field cloud map
    Thermal stress and depth of action of paint removal surface at t=750 ns
    Experimental equipment and specimens
    Stress-strain test results of acrylic polyurethane paint. (a) Tensile test curve; (b) compression test curve
    Schematic of action area of thermal stress on surface of ablation pit
    Comparison result of cross-section profile and SEM morphology of single-pulse laser paint removal crater surface. (a) SEM morphology of crater surface; (b) comparison result of cross-section profile
    Mechanism of single-pulse laser paint removal. (a) Irradiation and gasification; (b) ablation and plasma cleaning; (c) thermal stress effect
    OM morphology of paint removal surface by multi-pulse surface scanning laser at different scanning speeds. (a)(b) ν=1000 mm/s; (c)(d) ν=900 mm/s; (e)(f) ν=800 mm/s; (g)(h) ν=700 mm/s
    Comparison of theoretical and experimental laser irradiated areas at different scanning speeds. (a) ν=1000 mm/s; (b) ν=900 mm/s; (c) ν=800 mm/s; (d) ν=700 mm/s
    Backscatter SEM microscopic morphology of surface after paint removal at different scanning speeds. (a)(b) ν=1000 mm/s; (c)(d) ν=900 mm/s; (e)(f) ν=800 mm/s; (g)(h) ν=700 mm/s
    • Table 1. Chemical compositions of LY12 aluminum alloy

      View table

      Table 1. Chemical compositions of LY12 aluminum alloy

      ElementSiFeCuMnMgCrZnTiAl
      Mass fraction /%0.060.184.730.631.650.020.220.04Bal.
    • Table 2. EDS results of oxide films

      View table

      Table 2. EDS results of oxide films

      ElementCOAlSi
      Atomic fraction /%17.2353.1825.224.37
    • Table 3. Main components of two-component acrylic polyurethane paint

      View table

      Table 3. Main components of two-component acrylic polyurethane paint

      ComponentTopcoatPrimer
      First componentHydroxy acrylic resinAcrylic resin
      Second componentHexamethylene diisocyanate biuretPolyisocyanate
    • Table 4. EDS results of primer and topcoat

      View table

      Table 4. EDS results of primer and topcoat

      SampleAtomic fraction /%
      COTiSiMgPt
      Topcoat78.4220.320.230.290.150.59
      Primer78.3620.350.260.310.120.60
    • Table 5. Process parameters of single-pulse laser paint removal experiment for composite paint layer system

      View table

      Table 5. Process parameters of single-pulse laser paint removal experiment for composite paint layer system

      ParameterValue
      Average power (P) /W100
      Pulse width (τ) /ns200
      Repetition frequency (f) /kHz10
      Spot diameter (D) /μm50
    • Table 6. Process parameters of multi-pulse surface scanning laser paint removal experiment for composite paint layer system

      View table

      Table 6. Process parameters of multi-pulse surface scanning laser paint removal experiment for composite paint layer system

      ParameterValue
      Average power (P) /W100
      Pulse width (τ) /ns200
      Repetition frequency (f) /kHz10
      Spot diameter (D) /μm50
      Scanning speed (ν) /(mm‧s-11000, 900, 800, 700
      Line spacing (γ) /μm0
    • Table 7. Detection contents and characterization devices

      View table

      Table 7. Detection contents and characterization devices

      ContentEquipment
      Gasification point of paint layerThermal gravimetric analyzer (TGA)
      Strength limit of paint layerUniversal testing machine (UTM)
      Surface and cross-section appearances before and after paint removal

      Optical microscope(OM)

      White light interferometer (WLI)

      Microstructure of surface after paint removalScanning electron microscope (SEM)
      Composition of surface after paint removalEnergy dispersive spectroscope (EDS)
    • Table 8. Thermophysical property parameters of paint layer

      View table

      Table 8. Thermophysical property parameters of paint layer

      ParameterValue
      Density (ρ) /(kg‧m-31450
      Specific heat (Cp) /[J‧(kg∙K)-12500
      Thermal conductivity (k) /[W∙(m∙K)-10.3
      Absorption coefficient (A0.8
      Young modulus (E)/Pa1×1010
      Thermal expansion coefficient (α)/K-16×10-6
      Poisson ratio (μ0.17
    • Table 9. Stress-strain experimental parameters

      View table

      Table 9. Stress-strain experimental parameters

      ParameterValue
      Tensile and compressive speed /(mm‧min-110
      Experimental temperature /℃22
    • Table 10. EDS test results of different surface areas after paint removal at different scanning speeds

      View table

      Table 10. EDS test results of different surface areas after paint removal at different scanning speeds

      PointAtomic fraction /%
      COMgSiTiSPtAl
      A'26.7543.5112.948.817.040.95
      B154.6036.882.292.071.980.56
      B228.9242.710.701.051.004.060.7820.36
      C153.1225.873.342.973.022.780.658.25
      C241.4233.280.790.701.014.511.1217.17
    Tools

    Get Citation

    Copy Citation Text

    Tiangang Zhang, Yu Li, Junhao Zou, Zhiqiang Zhang, Yanan Liu. Simulation and Experimental Study on Laser Cleaning of Surface Paint Layer of Aluminum Alloy Skin for Civil Aircraft[J]. Chinese Journal of Lasers, 2024, 51(16): 1602209

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Surface Machining

    Received: Aug. 1, 2023

    Accepted: Oct. 11, 2023

    Published Online: Apr. 17, 2024

    The Author Email: Zhiqiang Zhang (zqzhang@cauc.edu.com)

    DOI:10.3788/CJL231079

    CSTR:32183.14.CJL231079

    Topics