Journal of Synthetic Crystals, Volume. 52, Issue 6, 945(2023)
Research Progress on Energy Band Structure and Physical Properties of Terminated Diamond
[1] [1] PERNEGGER H, ROE S, WEILHAMMER P, et al. Charge-carrier properties in synthetic single-crystal diamond measured with the transient-current technique[J]. Journal of Applied Physics, 2005, 97(7): 073704.
[2] [2] SHU G Y, DAI B, BOLSHAKOV A, et al. Coessential-connection by microwave plasma chemical vapor deposition: a common process towards wafer scale single crystal diamond[J]. Functional Diamond, 2021, 1(1): 47-62.
[3] [3] LIAO M Y, SANG L W, TERAJI T, et al. Comprehensive investigation of single crystal diamond deep-ultraviolet detectors[J]. Japanese Journal of Applied Physics, 2012, 51(9R): 090115.
[4] [4] LAGRANGE J P, DENEUVILLE A, GHEERAERT E. Activation energy in low compensated homoepitaxial boron-doped diamond films 1[J]. Diamond and Related Materials, 1998, 7(9): 1390-1393.
[5] [5] PINAULT M A, BARJON J, KOCINIEWSKI T, et al. The n-type doping of diamond: present status and pending questions[J]. Physica B: Condensed Matter, 2007, 401/402: 51-56.
[6] [6] SASAMA Y, KAGEURA T, IMURA M, et al. High-mobility p-channel wide-bandgap transistors based on hydrogen-terminated diamond/hexagonal boron nitride heterostructures[J]. Nature Electronics, 2021, 5(1): 37-44.
[8] [8] SCHENK A K, RIETWYK K J, TADICH A, et al. High resolution core level spectroscopy of hydrogen-terminated (100) diamond[J]. Journal of Physics: Condensed Matter, 2016, 28(30): 305001.
[9] [9] TAKEUCHI D, KATO H, RI G S, et al. Direct observation of negative electron affinity in hydrogen-terminated diamond surfaces[J]. Applied Physics Letters, 2005, 86(15): 152103.
[10] [10] KONO S, SAITOU T, KAWATA H, et al. Characteristic energy band values and electron attenuation length of a chemical-vapor-deposition diamond (001) 2×1 surface[J]. Surface Science, 2009, 603(6): 860-866.
[11] [11] ROBERTSON J, RUTTER M J. Band diagram of diamond and diamond-like carbon surfaces[J]. Diamond and Related Materials, 1998, 7(2/3/4/5): 620-625.
[12] [12] SQUE S J, JONES R, BRIDDON P R. Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces[J]. Physical Review B, 2006, 73(8): 085313.
[13] [13] BAUMANN P K, NEMANICH R J. Surface cleaning, electronic states and electron affinity of diamond (100), (111) and (110) surfaces[J]. Surface Science, 1998, 409(2): 320-335.
[14] [14] TAKEUCHI D, RI S G, KATO H, et al. Negative electron affinity on hydrogen terminated diamond[J]. Physica Status Solidi (A), 2005, 202(11): 2098-2103.
[15] [15] CUI J B, RISTEIN J, LEY L. Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface[J]. Physical Review Letters, 1998, 81(2): 429-432.
[16] [16] MAIER F, RISTEIN J, LEY L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces[J]. Physical Review B, 2001, 64(16): 165411.
[17] [17] NEBEL C E, REZEK B, ZRENNER A. Electronic properties of the 2D-hole accumulation layer on hydrogen terminated diamond[J]. Diamond and Related Materials, 2004, 13(11/12): 2031-2036.
[18] [18] NEBEL C E, REZEK B, ZRENNER A. 2D-hole accumulation layer in hydrogen terminated diamond[J]. Physica Status Solidi (A), 2004, 201(11): 2432-2438.
[19] [19] KCK F A M, GARGUILO J M, BROWN B, et al. Enhanced low-temperature thermionic field emission from surface-treated N-doped diamond films[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 774-779.
[20] [20] WAN G, CATTELAN M, CROOT A, et al. Spectroscopic insight of low energy electron emission from diamond surfaces[J]. Carbon, 2021, 185: 376-383.
[21] [21] REZEK B, NEBEL C E, STUTZMANN M. Hydrogenated diamond surfaces studied by atomic and Kelvin force microscopy[J]. Diamond and Related Materials, 2004, 13(4/5/6/7/8): 740-745.
[22] [22] TSUGAWA K, KITATANI K, NODA H, et al. High-preformance diamond surface-channel field-effect transistors and their operation mechanism[J]. Diamond and Related Materials, 1999, 8(2/3/4/5): 927-933.
[23] [23] HAYASHI K, YAMANAKA S, WATANABE H, et al. Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films[J]. Journal of Applied Physics, 1997, 81(2): 744-753.
[24] [24] DENISENKO A, ALEKSOV A, PRIBIL A, et al. Hypothesis on the conductivity mechanism in hydrogen terminated diamond films[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 1138-1142.
[25] [25] MAIER F, RIEDEL M, MANTEL B, et al. Origin of surface conductivity in diamond[J]. Physical Review Letters, 2000, 85(16): 3472-3475.
[26] [26] RIEDEL M, RISTEIN J, LEY L. Recovery of surface conductivity of H-terminated diamond after thermal annealing in vacuum[J]. Physical Review B, 2004, 69(12): 125338.
[27] [27] CHAKRAPANI V, ANGUS J C, ANDERSON A B, et al. Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple[J]. Science, 2007, 318(5855): 1424-1430.
[28] [28] GI R S, MIZUMASA T, AKIBA Y, et al. Formation mechanism of p-type surface conductive layer on deposited diamond films[J]. Japanese Journal of Applied Physics, 1995, 34(10R): 5550.
[29] [29] SHIRAFUJI J, SUGINO T. Electrical properties of diamond surfaces[J]. Diamond and Related Materials, 1996, 5(6/7/8): 706-713.
[30] [30] PIANTANIDA G, BRESKIN A, CHECHIK R, et al. Effect of moderate heating on the negative electron affinity and photoyield of air-exposed hydrogen-terminated chemical vapor deposited diamond[J]. Journal of Applied Physics, 2001, 89(12): 8259-8264.
[31] [31] GI R, TASHIRO K, TANAKA S, et al. Hall effect measurements of surface conductive layer on undoped diamond films in NO2 and NH3 atmospheres[J]. Japanese Journal of Applied Physics, 1999, 38(6R): 3492.
[32] [32] SATO H, KASU M. Maximum hole concentration for Hydrogen-terminated diamond surfaces with various surface orientations obtained by exposure to highly concentrated NO2[J]. Diamond and Related Materials, 2013, 31: 47-49.
[33] [33] RISTEIN J, STROBEL P, LEY L. Surface conductivity of diamond: a novel doping mechanism[M]//Advances in Science and Technology. Stafa: Trans Tech Publications Ltd., 2006: 93-102.
[34] [34] STROBEL P, RIEDEL M, RISTEIN J, et al. Surface transfer doping of diamond[J]. Nature, 2004, 430(6998): 439-441.
[35] [35] EDMONDS M T, WANKE M, TADICH A, et al. Surface transfer doping of hydrogen-terminated diamond by C60F48: energy level scheme and doping efficiency[J]. The Journal of Chemical Physics, 2012, 136(12): 124701.
[36] [36] QI D C, CHEN W, GAO X Y, et al. Surface transfer doping of diamond (100) by tetrafluoro-tetracyanoquinodimethane[J]. Journal of the American Chemical Society, 2007, 129(26): 8084-8085.
[37] [37] CRAWFORD K G, CAO L A, QI D C, et al. Enhanced surface transfer doping of diamond by V2O5 with improved thermal stability[J]. Applied Physics Letters, 2016, 108(4): 042103.
[38] [38] MCGHEE J, GEORGIEV V P. Simulation study of surface transfer doping of hydrogenated diamond by MoO3 and V2O5 metal oxides[J]. Micromachines, 2020, 11(4): 433.
[39] [39] RUSSELL S A O, CAO L A, QI D C, et al. Surface transfer doping of diamond by MoO3: a combined spectroscopic and Hall measurement study[J]. Applied Physics Letters, 2013, 103(20): 202112.
[40] [40] XING K J, XIANG Y, JIANG M, et al. MoO3 induces p-type surface conductivity by surface transfer doping in diamond[J]. Applied Surface Science, 2020, 509: 144890.
[41] [41] TORDJMAN M, WEINFELD K, KALISH R. Boosting surface charge-transfer doping efficiency and robustness of diamond with WO3 and ReO3[J]. Applied Physics Letters, 2017, 111(11): 111601.
[42] [42] VERONA C, CICCOGNANI W, COLANGELI S, et al. Comparative investigation of surface transfer doping of hydrogen terminated diamond by high electron affinity insulators[J]. Journal of Applied Physics, 2016, 120(2): 025104.
[43] [43] FU Y, XU R M, YU X X, et al. Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature[J]. Chinese Physics B, 2021, 30(5): 058101.
[44] [44] LIU B J, LIU K, ZHANG S, et al. Self-powered solar-blind UV detectors based on O-terminated vertical diamond Schottky diode with low dark current, high detectivity, and high signal-to-noise ratio[J]. ACS Applied Electronic Materials, 2022, 4(12): 5996-6003.
[45] [45] ZHAO D, HU C, LIU Z C, et al. Diamond MIP structure Schottky diode with different drift layer thickness[J]. Diamond and Related Materials, 2017, 73: 15-18.
[46] [46] TWITCHEN D J, WHITEHEAD A J, COE S E, et al. High-voltage single-crystal diamond diodes[J]. IEEE Transactions on Electron Devices, 2004, 51(5): 826-828.
[47] [47] LIU B J, LIU K, RALCHENKO V, et al. Effect of americium-241 source activity on total conversion efficiency of diamond alpha-voltaic battery[J]. International Journal of Energy Research, 2019, 43(11): 6038-6044.
[48] [48] BORMASHOV V, TROSCHIEV S, VOLKOV A, et al. Development of nuclear microbattery prototype based on Schottky barrier diamond diodes[J]. Physica Status Solidi (a), 2015, 212(11): 2539-2547.
[49] [49] BALDUCCI A, MARINELLI M, MILANI E, et al. Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition[J]. Applied Physics Letters, 2005, 86(19): 193509.
[50] [50] LIU Z C, LI F N, WANG W, et al. Effect of depth of buried-In tungsten electrodes on single crystal diamond photodetector[J]. MRS Advances, 2016, 1(16): 1099-1104.
[51] [51] LIU K, ZHANG S, LIU B J, et al. Investigating the energetic band diagrams of oxygen-terminated CVD grown e6 electronic grade diamond[J]. Carbon, 2020, 169: 440-445.
[52] [52] TACHIKI M, KAIBARA Y, SUMIKAWA Y, et al. Characterization of locally modified diamond surface using Kelvin probe force microscope[J]. Surface Science, 2005, 581(2/3): 207-212.
[53] [53] MASUZAWA T, NEO Y, MIMURA H, et al. Electron emission mechanism of heavily phosphorus-doped diamond with oxidized surface[J]. Physica Status Solidi (a), 2019, 216(7): 1801025.
[54] [54] ZHENG J. Oxygen-induced surface state on diamond (100)[J]. Diamond and Related Materials, 2001, 10(3/4/5/6/7): 500-505.
[55] [55] O′DONNELL K M, MARTIN T L, EDMONDS M T, et al. Photoelectron emission from lithiated diamond[J]. Physica Status Solidi (A), 2014, 211(10): 2209-2222.
[56] [56] ITOH Y, SUMIKAWA Y, UMEZAWA H, et al. Trapping mechanism on oxygen-terminated diamond surfaces[J]. Applied Physics Letters, 2006, 89(20): 203503.
[57] [57] TERAJI T, GARINO Y, KOIDE Y, et al. Low-leakage p-type diamond Schottky diodes prepared using vacuum ultraviolet light/ozone treatment[J]. Journal of Applied Physics, 2009, 105(12): 126109.
[58] [58] GARINO Y, TERAJI T, KOIZUMI S, et al. P-type diamond Schottky diodes fabricated by vacuum ultraviolet light/ozone surface oxidation: comparison with diodes based on wet-chemical oxidation[J]. Physica Status Solidi (a), 2009, 206(9): 2082-2085.
[59] [59] ZHAO D, LIU Z C, WANG J, et al. Fabrication of dual-termination Schottky barrier diode by using oxygen-/fluorine-terminated diamond[J]. Applied Surface Science, 2018, 457: 411-416.
[60] [60] YAMANO H, KAWAI S, KATO K, et al. Charge state stabilization of shallow nitrogen vacancy centers in diamond by oxygen surface modification[J]. Japanese Journal of Applied Physics, 2017, 56(4S): 04CK08.
[61] [61] ZHANG S, LIU K, LIU B J, et al. Surface potential pinning study for oxygen terminated IIa diamond[J]. Carbon, 2023, 205: 69-75.
[62] [62] LIU K, WANG W H, DAI B, et al. Impact of UV spot position on forward and reverse photocurrent symmetry in a gold-diamond-gold detector[J]. Applied Physics Letters, 2018, 113(2): 023501.
[63] [63] ZHANG X H, LIU K, LIU B J, et al. Phenomenon of photo-regulation on gold/diamond Schottky barriers and its detector applications[J]. Applied Physics Letters, 2023, 122(6): 062106.
[64] [64] LIU K, LIU B J, ZHAO J W, et al. Application of back bias to interdigital-electrode structured diamond UV detector showing enhanced responsivity[J]. Sensors and Actuators A: Physical, 2019, 290: 222-227.
[65] [65] WANG L X, CHEN X K, WU G, et al. The influence of grain boundary on time response of diamond ultraviolet photo-detector[J]. Acta Physica Sinica, 2012, 61(3): 038101.
[66] [66] LIAO M Y. Progress in semiconductor diamond photodetectors and MEMS sensors[J]. Functional Diamond, 2021, 1(1): 29-46.
[67] [67] HIRAMA K, SATO H, HARADA Y, et al. Diamond field-effect transistors with 1.3 A/mm drain current density by Al2O3 passivation layer[J]. Japanese Journal of Applied Physics, 2012, 51(9R): 090112.
[68] [68] YU X X, ZHOU J J, QI C J, et al. A high frequency hydrogen-terminated diamond MISFET with ft/fmax of 70/80 GHz[J]. IEEE Electron Device Letters, 2018, 39(9): 1373-1376.
[69] [69] SCHENK A, TADICH A, SEAR M, et al. Formation of a silicon terminated (100) diamond surface[J]. Applied Physics Letters, 2015, 106(19): 191603.
[70] [70] SCHENK A K, TADICH A, SEAR M J, et al. The surface electronic structure of silicon terminated (100) diamond[J]. Nanotechnology, 2016, 27(27): 275201.
[71] [71] SCHENK A K, SEAR M J, TADICH A, et al. Oxidation of the silicon terminated (100) diamond surface[J]. Journal of Physics: Condensed Matter, 2017, 29(2): 025003.
[72] [72] BI T, CHANG Y H, FEI W X, et al. C-Si bonded two-dimensional hole gas diamond MOSFET with normally-off operation and wide temperature range stability[J]. Carbon, 2021, 175: 525-533.
[73] [73] FEI W X, BI T, IWATAKI M, et al. Oxidized Si terminated diamond and its MOSFET operation with SiO2 gate insulator[J]. Applied Physics Letters, 2020, 116(21): 212103.
[74] [74] ZHU X H, BI T, YUAN X L, et al. C-Si interface on SiO2/(111) diamond p-MOSFETs with high mobility and excellent normally-off operation[J]. Applied Surface Science, 2022, 593: 153368.
[75] [75] QIAO P F, LIU K, ZHANG S, et al. Origin of two-dimensional hole gas formation on Si-treated diamond surfaces: surface energy band diagram perspective[J]. Applied Surface Science, 2022, 584: 152560.
[76] [76] HIMPSEL F J, KNAPP J A, VANVECHTEN J A, et al. Quantum photoyield of diamond(111): a stable negative-affinity emitter[J]. Physical Review B, 1979, 20(2): 624-627.
[77] [77] TAKEUCHI D, RIEDEL M, RISTEIN J, et al. Surface band bending and surface conductivity of hydrogenated diamond[J]. Physical Review B, 2003, 68(4): 041304.
[78] [78] FOORD J S, HIAN L C, JACKMAN R B. An investigation of the surface reactivity of diamond photocathodes with molecular and atomic oxygen species[J]. Diamond and Related Materials, 2001, 10(3/4/5/6/7): 710-714.
[79] [79] O′DONNELL K M, EDMONDS M T, RISTEIN J, et al. Diamond surfaces with air-stable negative electron affinity and giant electron yield enhancement[J]. Advanced Functional Materials, 2013, 23(45): 5608-5614.
[80] [80] O′DONNELL K M, EDMONDS M T, TADICH A, et al. Extremely high negative electron affinity of diamond via magnesium adsorption[J]. Physical Review B, 2015, 92(3): 035303.
[81] [81] Van der WEIDE J. Schottky barrier height and negative electron affinity of titanium on (111) diamond[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1992, 10(4): 1940.
[82] [82] FURTHMLLER J, HAFNER J, KRESSE G. Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces[J]. Physical Review B, 1996, 53(11): 7334-7351.
[83] [83] RUTTER M J, ROBERTSON J. Ab initio calculation of electron affinities of diamond surfaces[J]. Physical Review B, 1998, 57(15): 9241-9245.
[84] [84] MARTIN T L. Lithium oxygen termination as a negative electron affinity surface on diamond: a computational and photoemission study[D]. Bristol, South West England, UK: University of Bristol, 2011.
[85] [85] O’DONNELL K M, MARTIN T L, FOX N A, et al. Ab initio investigation of lithium on the diamond C(100) surface[J]. Physical Review B, 2010, 82(11): 115303.
[86] [86] TIWARI A K, GOSS J P, BRIDDON P R, et al. Unexpected change in the electron affinity of diamond caused by the ultra-thin transition metal oxide films[J]. EPL (Europhysics Letters), 2014, 108(4): 46005.
[87] [87] JAMES M C, MAY P W, ALLAN N L. Ab initio study of negative electron affinity from light metals on the oxygen-terminated diamond (111) surface[J]. Journal of Physics: Condensed Matter, 2019, 31(29): 295002.
[88] [88] JAMES M C, CROOT A, MAY P W, et al. Negative electron affinity from aluminium on the diamond (100) surface: a theoretical study[J]. Journal of Physics: Condensed Matter, 2018, 30(23): 235002.
[89] [89] O’DONNELL K M, MARTIN T L, ALLAN N L. Light metals on oxygen-terminated diamond (100): structure and electronic properties[J]. Chemistry of Materials, 2015, 27(4): 1306-1315.
[90] [90] BAR-GILL N, PHAM L M, JARMOLA A, et al. Solid-state electronic spin coherence time approaching one second[J]. Nature Communications, 2013, 4: 1743.
[91] [91] RONDIN L, TETIENNE J P, HINGANT T, et al. Magnetometry with nitrogen-vacancy defects in diamond[J]. Reports on Progress in Physics, 2014, 77(5): 056503.
[92] [92] KAVIANI M, DEK P, ARADI B, et al. Proper surface termination for luminescent near-surface NV centers in diamond[J]. Nano Letters, 2014, 14(8): 4772-4777.
[93] [93] CHANDRAN M, SHASHA M, MICHAELSON S, et al. Nitrogen termination of single crystal (100) diamond surface by radio frequency N2 plasma process: an in-situ X-ray photoemission spectroscopy and secondary electron emission studies[J]. Applied Physics Letters, 2015, 107(11): 111602.
[94] [94] GONG M M, WANG Q L, GAO N, et al. Structural and electronic properties of nitrogen-terminated diamond (100) surfaces[J]. Diamond and Related Materials, 2021, 120: 108601.
[95] [95] SHEN W, PAN Y H, SHEN S N, et al. Electron affinity of boron-terminated diamond (001) surfaces: a density functional theory study[J]. Journal of Materials Chemistry C, 2019, 7(31): 9756-9765.
[96] [96] SUN Z L, YANG M C, WANG X T, et al. Boron-terminated diamond (100) surfaces with promising structural and electronic properties[J]. Physical Chemistry Chemical Physics, 2020, 22(15): 8060-8066.
Get Citation
Copy Citation Text
QIAO Pengfei, LIU Kang, DAI Bing, LIU Benjian, ZHANG Sen, ZHANG Xiaohui, ZHU Jiaqi. Research Progress on Energy Band Structure and Physical Properties of Terminated Diamond[J]. Journal of Synthetic Crystals, 2023, 52(6): 945
Category:
Received: Mar. 15, 2023
Accepted: --
Published Online: Aug. 13, 2023
The Author Email: QIAO Pengfei (20B918142@stu.hit.edu.cn)
CSTR:32186.14.