Chinese Optics, Volume. 16, Issue 5, 1034(2023)

Image super-resolution reconstruction with multi-scale attention fusion

Chun-yi CHEN*, Xin-yi WU, Xiao-juan HU, and Hai-yang YU
Author Affiliations
  • School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
  • show less
    Figures & Tables(13)
    Multi-scale attention residual network
    Multi-scale feature extraction unit
    Feature fusion reconstruction layer
    Modules for comparison
    Comparison of the results of "zebra" 3× in the Set14 dataset
    Comparison of the results of "148026" 4× in the B100 dataset
    Comparison of the results of "img012" 4× in the Urban100 dataset
    PSNR and parameters of different models on the Set5(×4) dataset
    • Table 1. Parameters of the multi-scale feature extraction units

      View table
      View in Article

      Table 1. Parameters of the multi-scale feature extraction units

      所属 模块 组件名卷积核 大小 输入尺寸输出尺寸
      第一级Conv11×1H×W×64 H×W×32
      Conv33×3H×W×32 H×W×32
      第二级Conv33×3H×W×64 H×W×64
      通道注意力Fusion1×1H×W×192 H×W×64
      PoolingH×W×64 1×1×64
      Conv1-11×11×1×641×1×4
      Conv1-21×11×1×41×1×64
    • Table 2. Validation of different modules

      View table
      View in Article

      Table 2. Validation of different modules

      模型名字CARBFFRLPSNR/SSIM/TIME
      MSARNSC××27.62/0.7682/ 0.11s
      MSARNDB××27.67/0.7751/0.16s
      MSARNIB××27.78/0.7767/0.13s
      MSARNFFRL-×28.26/0.7789/0.15s
      MSARN28.64 /0.7840/0.14s
    • Table 3. Validation of residual branch and channel attention

      View table
      View in Article

      Table 3. Validation of residual branch and channel attention

      模块名字CARBFFRLPSNR/SSIM
      MSARNRB-×28.57/0.7802
      MSARNCA-×28.35/0.7778
      MSARN28.64 /0.7840
    • Table 4. PSNR comparison of different loss functions

      View table
      View in Article

      Table 4. PSNR comparison of different loss functions

      放大比例损失函数Set5Set14
      ×2L237.8433.50
      Charbonnier38.1333.89
      ×3L233.9130.03
      Charbonnier34.0530.40
      ×4L231.5328.26
      Charbonnier31.6728.41
    • Table 5. PSNR/SSIM comparison of different super-resolution models

      View table
      View in Article

      Table 5. PSNR/SSIM comparison of different super-resolution models

      放大比例方法Set5Set14BSD100Urban100
      ×2Bicubic33.68/0.926530.24/0.869129.56/0.843526.88/0.8405
      SRCNN36.66/0.954232.45/0.906731.56/0.887929.51/0.8946
      VDSR37.52/0.958733.05/0.912731.90/0.896030.77/0.9141
      DRRN37.74/0.959733.23/0.913632.05/0.897331.23/0.9188
      IDN37.83/0.960033.30/0.914832.08/0.898531.27/0.9196
      MSRN38.08/0.960533.74/0.9170 32.23/0.901332.22/0.9326
      PAN38.00/0.960533.59/ 0.918132.18/0.899732.01/0.9273
      EFDN38.00/0.960433.57/0.917932.18/0.899832.05/0.9275
      本文38.43/0.962634.05/0.921332.32/0.902832.28/0.9338
      ×3Bicubic30.40/0.868627.54/0.774127.21/0.738924.46/0.7349
      SRCNN32.75/0.909029.29/0.821528.41/0.786326.24/0.7991
      VDSR33.66/0.921329.78/0.831828.83/0.797627.14/0.8279
      DRRN34.03/0.924429.96/0.834928.95/0.800427.53/0.8377
      IDN34.11/0.925329.99/0.835428.95/0.801327.42/0.8359
      MSRN34.38/0.926230.34/0.839529.08/0.804128.08/ 0.8554
      PAN34.40/0.927130.36/ 0.842329.11/0.805028.11/0.8511
      本文34.61/0.928430.33/0.848029.25/0.807628.39/0.8607
      ×4Bicubic28.43/0.810926.00/0.702325.96/0.667823.14/0.6574
      SRCNN30.48/0.862827.50/0.751326.90/0.710324.52/0.7226
      VDSR31.35/0.883828.02/0.767827.29/0.725225.18/0.7525
      DRRN31.68/0.888828.21/0.772027.38/0.728425.44/0.7638
      IDN31.82/0.890328.25/0.773027.41/0.729725.41/0.7632
      MSRN32.07/0.890328.60/0.775127.52/0.727326.04/0.7896
      PAN32.13/0.894828.61/0.782227.59/0.736326.11/0.7854
      EFDN32.08/0.893128.58/0.780927.56/0.735426.00/0.7815
      本文32.52/0.899228.85/0.784027.70/0.741026.21/0.7866
    Tools

    Get Citation

    Copy Citation Text

    Chun-yi CHEN, Xin-yi WU, Xiao-juan HU, Hai-yang YU. Image super-resolution reconstruction with multi-scale attention fusion[J]. Chinese Optics, 2023, 16(5): 1034

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Jan. 28, 2023

    Accepted: Apr. 4, 2023

    Published Online: Oct. 27, 2023

    The Author Email:

    DOI:10.37188/CO.2023-0020

    Topics