Journal of Synthetic Crystals, Volume. 50, Issue 2, 260(2021)

Surface Acoustic Waves Properties of 0.24PIN-0.47PMN-0.29PT Relaxor Ferroelectric Single Crystals

LI Xiuming1、*, WU Guangtao1, and ZHANG Rui2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(21)

    [1] [1] GORLA C R, EMANETOGLU N W, LIANG S, et al. Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (011-2) sapphire by metalorganic chemical vapor deposition[J]. Journal of Applied Physics, 1999, 85(5): 2595-2602.

    [2] [2] ARSAT R, BREEDON M, SHAFIEI M, et al. Graphene-like nano-sheets for surface acoustic wave gas sensor applications[J]. Chemical Physics Letters, 2009, 467(4/5/6): 344-347.

    [3] [3] DING X Y, LI P, LIN S C S, et al. Surface acoustic wave microfluidics[J]. Lab on a Chip, 2013, 13(18): 3626-3649.

    [4] [4] MUNK D, KATZMAN M, HEN M, et al. Surface acoustic wave photonic devices in silicon on insulator[J]. Nature Communications, 2019, 10(1): 4214.

    [6] [6] SYAMSU I, GRANZ T, SCHOLZ G, et al. Design and fabrication of AlN-on-Si chirped surface acoustic wave resonators for label-free cell detection[J]. Journal of Physics: Conference Series, 2019, 1319: 012011.

    [7] [7] YANG J, RáCZ Z, GARDNER J W, et al. Ratiometric info-chemical communication system based on polymer-coated surface acoustic wave microsensors[J]. Sensors and Actuators B: Chemical, 2012, 173: 547-554.

    [8] [8] OGURA H, TAKAYANAGI S, ABE K, et al. Design of zinc oxide-based surface acoustic wave sensors using a graphene electrode[J]. Japanese Journal of Applied Physics, 2019, 58(SA): SAAE03.

    [9] [9] LI G, TIAN F H, GAO X Y, et al. Investigation of high-power properties of PIN-PMN-PT relaxor-based ferroelectric single crystals and PZT-4 piezoelectric ceramics[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(8): 1641-1646.

    [10] [10] SUN E W, CAO W W. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications[J]. Progress in Materials Science, 2014, 65: 124-210.

    [11] [11] BOKOV A A, YE Z G. Dielectric relaxation in relaxor ferroelectrics[J]. Journal of Advanced Dielectrics, 2012, 2(2): 1241010.

    [12] [12] ZHANG S J, LI F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective[J]. Journal of Applied Physics, 2012, 111(3): 031301.

    [13] [13] SUN E W, ZHANG S J, LUO J, et al. Elastic, dielectric, and piezoelectric constants of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal poled along [011]C[J]. Applied Physics Letters, 2010, 97(3): 032902.

    [14] [14] HOSONO Y, YAMASHITA Y, SAKAMOTO H, et al. Growth of single crystals of high-curie-temperature Pb(In1/2Nb1/2)o3-Pb(Mg1/3Nb2/3)O3-PbTiO3Ternary systems near morphotropic phase boundary[J]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 9A): 5681-5686.

    [15] [15] SUN P, ZHOU Q, ZHU B, et al. Design and fabrication of PIN-PMN-PT single-crystal high-frequency ultrasound transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(12): 2760-2763.

    [16] [16] LI X, MA T, TIAN J, et al. Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(7): 1171-1178.

    [17] [17] KIM K, ZHANG S, ZHANG S, et al. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(11): 2548-2554.

    [18] [18] SUN E, ZHANG R, WU F, et al. Influence of manganese doping to the full tensor properties of 0.24Pb(In1/2Nb1/2)O3-0.47Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystals[J]. J Appl Phys, 2013, 113(7): 74108.

    [19] [19] CHOI K H, OH J H, KIM H J, et al. Surface acoustic wave propagation properties of the relaxor ferroelectric PMN-PT single crystal[C]//2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263). October 7-10, 2001, Atlanta, GA, USA. IEEE, 2001: 161-163.

    [21] [21] KARAKI T, NAKAMOTO M, SUMIYOSHI Y, et al. Top-seeded solution growth of Pb[(In1/2Nb1/2), (Mg1/3Nb2/3), Ti]O3Single crystals[J]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 9B): 6059-6061.

    [22] [22] SUN E W, ZHANG R, WU F M, et al. Complete matrix properties of [001]c and [011]c poled 0.33Pb(In1/2Nb1/2)O3-0.38Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystals[J]. Journal of Alloys and Compounds, 2013, 553: 267-269.

    [23] [23] LI X M, ZHANG R, HUANG N X, et al. Surface acoustic wave propagation in relaxor-based ferroelectric single crystals 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 poled along [011]c[J]. Chinese Physics Letters, 2012, 29(2): 024302.

    Tools

    Get Citation

    Copy Citation Text

    LI Xiuming, WU Guangtao, ZHANG Rui. Surface Acoustic Waves Properties of 0.24PIN-0.47PMN-0.29PT Relaxor Ferroelectric Single Crystals[J]. Journal of Synthetic Crystals, 2021, 50(2): 260

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 26, 2020

    Accepted: --

    Published Online: Mar. 30, 2021

    The Author Email: Xiuming LI (lixiuming4518@163.com)

    DOI:

    CSTR:32186.14.

    Topics