Journal of Semiconductors, Volume. 43, Issue 5, 051202(2022)

Characterization of interfaces: Lessons from the past for the future of perovskite solar cells

Wanlong Wang1, Dongyang Zhang2, Rong Liu1, Deepak Thrithamarassery Gangadharan2, Furui Tan1, and Makhsud I. Saidaminov2
Author Affiliations
  • 1Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
  • 2Department of Chemistry, Department of Electrical & Computer Engineering, and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada
  • show less
    References(160)

    [1] T Dullweber, M Stöhr, C Kruse et al. Evolutionary PERC+ solar cell efficiency projection towards 24% evaluating shadow-mask-deposited poly-Si fingers below the Ag front contact as next improvement step. Sol Energy Mater Sol Cells, 212, 110586(2020).

    [2] J Yu, M D Liao, D Yan et al. Activating and optimizing evaporation-processed magnesium oxide passivating contact for silicon solar cells. Nano Energy, 62, 181(2019).

    [3] T G Allen, J Bullock, X B Yang et al. Passivating contacts for crystalline silicon solar cells. Nat Energy, 4, 914(2019).

    [4] K Yoshikawa, H Kawasaki, W Yoshida et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy, 2, 1(2017).

    [5] T Kato, J L Wu, Y Hirai et al. Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu(In, Ga)(Se, S)2. IEEE J Photovolt, 9, 325(2019).

    [6] W K Metzger, S Grover, D Lu et al. Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat Energy, 4, 837(2019).

    [7] J M Burst, J N Duenow, D S Albin et al. CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nat Energy, 1, 16015(2016).

    [8] M A Green, Y Hishikawa, E D Dunlop et al. Solar cell efficiency tables (Version 53). Prog Photovolt: Res Appl, 27, 3(2019).

    [9] M Jeong, I W Choi, E M Go et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 369, 1615(2020).

    [10] T H Han, S Tan, J J Xue et al. Interface and defect engineering for metal halide perovskite optoelectronic devices. Adv Mater, 31, 1803515(2019).

    [11] Y Bai, X Y Meng, S H Yang. Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Adv Energy Mater, 8, 1701883(2018).

    [12] P Schulz, D Cahen, A Kahn. Halide perovskites: Is it all about the interfaces. Chem Rev, 119, 3349(2019).

    [13] F Zhang, K Zhu. Additive engineering for efficient and stable perovskite solar cells. Adv Energy Mater, 10, 1902579(2020).

    [14] C T Zuo, H J Bolink, H W Han et al. Advances in perovskite solar cells. Adv Sci, 3, 1500324(2016).

    [15] N J Jeon, H Na, E H Jung et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy, 3, 682(2018).

    [16] Q Jiang, Y Zhao, X W Zhang et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 13, 460(2019).

    [17] G Yang, Z W Ren, K Liu et al. Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat Photonics, 15, 681(2021).

    [18] S Y Shao, M A Loi. The role of the interfaces in perovskite solar cells. Adv Mater Interfaces, 7, 1901469(2020).

    [19] Y W Miao, M M Zheng, H X Wang et al. In-situ secondary annealing treatment assisted effective surface passivation of shallow defects for efficient perovskite solar cells. J Power Sources, 492, 229621(2021).

    [20] P Wang, F Cai, L Yang et al. Eliminating light-soaking instability in planar heterojunction perovskite solar cells by interfacial modifications. ACS Appl Mater Interfaces, 10, 33144(2018).

    [21] F Zheng, X M Wen, T L Bu et al. Slow response of carrier dynamics in perovskite interface upon illumination. ACS Appl Mater Interfaces, 10, 31452(2018).

    [22] W Chen, Y C Zhou, G C Chen et al. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells. Adv Energy Mater, 9, 1803872(2019).

    [23] S B Xiong, T Hao, Y Y Sun et al. Defect passivation by nontoxic biomaterial yields 21% efficiency perovskite solar cells. J Energy Chem, 55, 265(2021).

    [24] T S Sherkar, C Momblona, L Gil-Escrig et al. Recombination in perovskite solar cells: Significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett, 2, 1214(2017).

    [25] A M A Leguy, Y H Hu, M Campoy-Quiles et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem Mater, 27, 3397(2015).

    [26] F Deng, X T Li, X Lv et al. Low-temperature processing all-inorganic carbon-based perovskite solar cells up to 11.78% efficiency via alkali hydroxides interfacial engineering. ACS Appl Energy Mater, 3, 401(2020).

    [27] J H Wu, J J Shi, Y M Li et al. Quantifying the interface defect for the stability origin of perovskite solar cells. Adv Energy Mater, 9, 1901352(2019).

    [28] T T Wu, C Zhen, H Z Zhu et al. Gradient Sn-doped heteroepitaxial film of faceted rutile TiO2 as an electron selective layer for efficient perovskite solar cells. ACS Appl Mater Interfaces, 11, 19638(2019).

    [29] G X Wang, L P Wang, J H Qiu et al. In situ passivation on rear perovskite interface for efficient and stable perovskite solar cells. ACS Appl Mater Interfaces, 12, 7690(2020).

    [30] H C Hsieh, C Y Hsiow, K F Lin et al. Analysis of defects and traps in N–I–P layered-structure of perovskite solar cells by charge-based deep level transient spectroscopy (Q-DLTS). J Phys Chem C, 122, 17601(2018).

    [31] Z H Liu, L B Qiu, L K Ono et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2, 000-hour operational stability. Nat Energy, 5, 596(2020).

    [32] A Mahapatra, D Prochowicz, M M Tavakoli et al. A review of aspects of additive engineering in perovskite solar cells. J Mater Chem A, 8, 27(2020).

    [33] S L Cao, H X Wang, H Y Li et al. Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr2 perovskite solar cells. Chem Eng J, 394, 124903(2020).

    [34] M M Tavakoli, R Tavakoli, P Yadav et al. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. J Mater Chem A, 7, 679(2019).

    [35] X P Zheng, Y Hou, C X Bao et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat Energy, 5, 131(2020).

    [36] Z F Wu, Z H Liu, Z H Hu et al. Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv Mater, 31, 1804284(2019).

    [37] M M Tavakoli, M Saliba, P Yadav et al. Synergistic crystal and interface engineering for efficient and stable perovskite photovoltaics. Adv Energy Mater, 9, 1802646(2019).

    [38] J J Yoo, S Wieghold, M C Sponseller et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ Sci, 12, 2192(2019).

    [39] C C Boyd, R Cheacharoen, T Leijtens et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev, 119, 3418(2019).

    [40] A J Pearson, G E Eperon, P E Hopkinson et al. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3−xClx perovskite solar cells: Kinetics and mechanisms. Adv Energy Mater, 6, 1600014(2016).

    [41] N K Noel, S D Stranks, A Abate et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci, 7, 3061(2014).

    [42] J Y Seo, H S Kim, S Akin et al. Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy Environ Sci, 11, 2985(2018).

    [43] J Z Chen, N G Park. Inorganic hole transporting materials for stable and high efficiency perovskite solar cells. J Phys Chem C, 122, 14039(2018).

    [44] T A Berhe, W N Su, C H Chen et al. Organometal halide perovskite solar cells: Degradation and stability. Energy Environ Sci, 9, 323(2016).

    [45] G D Niu, X D Guo, L D Wang. Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A, 3, 8970(2015).

    [46] T Q Niu, J Lu, R Munir et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv Mater, 30, 1706576(2018).

    [47] Q Guo, F Yuan, B Zhang et al. Passivation of the grain boundaries of CH3NH3PbI3 using carbon quantum dots for highly efficient perovskite solar cells with excellent environmental stability. Nanoscale, 11, 115(2018).

    [48] J Yang, B D Siempelkamp, D Liu et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano, 9, 1955(2015).

    [49] Z N Song, A Abate, S C Watthage et al. Perovskite solar cell stability in humid air: Partially reversible phase transitions in the PbI2-CH3NH3I-H2O system. Adv Energy Mater, 6, 1600846(2016).

    [50] G D Niu, W Z Li, F Q Meng et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J Mater Chem A, 2, 705(2014).

    [51] Y Chen, N Li, L Wang et al. Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat Commun, 10, 1112(2019).

    [52] L L Zheng, Y H Chung, Y Z Ma et al. A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. Chem Commun, 50, 11196(2014).

    [53] X D Li, S Z Ke, X X Feng et al. Enhancing the stability of perovskite solar cells through cross-linkable and hydrogen bonding multifunctional additives. J Mater Chem A, 9, 12684(2021).

    [54] J Yang, C Liu, C S Cai et al. High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv Energy Mater, 9, 1900198(2019).

    [55] W Q Wu, Z Yang, P N Rudd et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci Adv, 5, eaav8925(2019).

    [56] X P Zheng, J Troughton, N Gasparini et al. Quantum dots supply bulk- and surface-passivation agents for efficient and stable perovskite solar cells. Joule, 3, 1963(2019).

    [57] B Yu, C Zuo, J Shi et al. Defect engineering on all-inorganic perovskite solar cells for high efficiency. J Semicond, 42, 050203(2021).

    [58] M Cheng, C Zuo, Y Wu et al. Charge-transport layer engineering in perovskite solar cells. Sci Bull, 65, 1237(2020).

    [59] J Zhang, S X Hou, R J Li et al. I/P interface modification for stable and efficient perovskite solar cells. J Semicond, 41, 052202(2020).

    [60] H Tan, A Jain, O Voznyy et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355, 722(2017).

    [61] W L Tan, Y Y Choo, W C Huang et al. Oriented attachment as the mechanism for microstructure evolution in chloride-derived hybrid perovskite thin films. ACS Appl Mater Interfaces, 11, 39930(2019).

    [62] J Ren, Q Luo, Q Z Hou et al. Suppressing charge recombination and ultraviolet light degradation of perovskite solar cells using silicon oxide passivation. ChemElectroChem, 6, 3167(2019).

    [63] J Ha, H Kim, H Lee et al. Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Sol Energy Mater Sol Cells, 161, 338(2017).

    [64] X Zhang, S Ma, J B You et al. Tailoring molecular termination for thermally stable perovskite solar cells. J Semicond, 42, 112201(2021).

    [65] S S Shin, J H Suk, B J Kang et al. Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. Energy Environ Sci, 12, 958(2019).

    [66] S Idrissi, S Ziti, H Labrim et al. Band gaps of the solar perovskites photovoltaic CsXCl3 (X = Sn, Pb or Ge). Mater Sci Semicond Process, 122, 105484(2021).

    [67] L H Zhang, X Zhang, G Lu. Band alignment in two-dimensional halide perovskite heterostructures: Type I or type II. J Phys Chem Lett, 11, 2910(2020).

    [68] C S Liao, Z L Yu, P B He et al. Effects of composition modulation on the type of band alignments for Pd2Se3/CsSnBr3 van der Waals heterostructure: A transition from type I to type II. J Power Sources, 478, 229078(2020).

    [69] Y Raoui, H Ez-Zahraouy, S Kazim et al. Energy level engineering of charge selective contact and halide perovskite by modulating band offset: Mechanistic insights. J Energy Chem, 54, 822(2021).

    [70] K G Lim, S Ahn, Y H Kim et al. Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic–inorganic hybrid perovskite solar cells. Energy Environ Sci, 9, 932(2016).

    [71] R Begum, M R Parida, A L Abdelhady et al. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J Am Chem Soc, 139, 731(2017).

    [72] D Meggiolaro, E Mosconi, A H Proppe et al. Energy level tuning at the MAPbI3 perovskite/contact interface using chemical treatment. ACS Energy Lett, 4, 2181(2019).

    [73] H Choi, J Jeong, H B Kim et al. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 7, 80(2014).

    [74] K Z Du, X M Wang, Q W Han et al. Heterovalent B-site co-alloying approach for halide perovskite bandgap engineering. ACS Energy Lett, 2, 2486(2017).

    [75] E L Unger, L Kegelmann, K Suchan et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J Mater Chem A, 5, 11401(2017).

    [76] X D Ding, H X Wang, C Chen et al. Passivation functionalized phenothiazine-based hole transport material for highly efficient perovskite solar cell with efficiency exceeding 22%. Chem Eng J, 410, 128328(2021).

    [77] L S Xie, Z Y Cao, J W Wang et al. Improving energy level alignment by adenine for efficient and stable perovskite solar cells. Nano Energy, 74, 104846(2020).

    [78] Z H Zhang, J Li, Z M Fang et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 42, 030501(2021).

    [79] Q Cao, Z Li, J Han et al. Electron transport bilayer with cascade energy alignment for efficient perovskite solar cells. Sol RRL, 3, 1900333(2019).

    [80] P Schulz, E Edri, S Kirmayer et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ Sci, 7, 1377(2014).

    [81] X Guo, C McCleese, C Kolodziej et al. Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite. Dalton Trans, 45, 3806(2016).

    [82] M Shkir, M T Khan, S AlFaify. Novel Nd-doping effect on structural, morphological, optical, and electrical properties of facilely fabricated PbI2 thin films applicable to optoelectronic devices. Appl Nanosci, 9, 1417(2019).

    [83] L Yang, X Wang, X Mai et al. Constructing efficient mixed-ion perovskite solar cells based on TiO2 nanorod array. J Colloid Interface Sci, 534, 459(2019).

    [84] Y Chen, Q Meng, Y Xiao et al. Mechanism of PbI2in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl Mater Interfaces, 11, 44101(2019).

    [85] Q Cui, X C Zhao, H Lin et al. Improved efficient perovskite solar cells based on Ta-doped TiO2 nanorod arrays. Nanoscale, 9, 18897(2017).

    [86] J M Liu, L Q Zhu, S S Xiang et al. Cs-doped TiO2 nanorod array enhances electron injection and transport in carbon-based CsPbI3 perovskite solar cells. ACS Sustain Chem Eng, 7, 16927(2019).

    [87] S F Wu, C Chen, J M Wang et al. Controllable preparation of rutile TiO2 nanorod array for enhanced photovoltaic performance of perovskite solar cells. ACS Appl Energy Mater, 1, 1649(2018).

    [88] P S Chandrasekhar, A Dubey, Q Q Qiao. High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer. Sol Energy, 197, 78(2020).

    [89] Y Zhao, H Tan, H Yuan et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun, 9, 1607(2018).

    [90] M Nukunudompanich, G Budiutama, K Suzuki et al. Dominant effect of the grain size of the MAPbI3 perovskite controlled by the surface roughness of TiO2 on the performance of perovskite solar cells. CrystEngComm, 22, 2718(2020).

    [91] E H Jung, N J Jeon, E Y Park et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567, 511(2019).

    [92] V K Ravi, P K Santra, N Joshi et al. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. J Phys Chem Lett, 8, 4988(2017).

    [93] C C Boyd, R C Shallcross, T Moot et al. Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule, 4, 1759(2020).

    [94] T H Wu, Y B Wang, X Li et al. Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules. Adv Energy Mater, 9, 1803766(2019).

    [95] F Matteocci, Y Busby, J J Pireaux et al. Interface and composition analysis on perovskite solar cells. ACS Appl Mater Interfaces, 7, 26176(2015).

    [96] Y Busby, A Agresti, S Pescetelli et al. Aging effects in interface-engineered perovskite solar cells with 2D nanomaterials: A depth profile analysis. Mater Today Energy, 9, 1(2018).

    [97] D Xu, X Hua, S C Liu et al. In situ and real-time ToF-SIMS analysis of light-induced chemical changes in perovskite CH3NH3PbI3. Chem Commun Camb Engl, 54, 5434(2018).

    [98] S P Harvey, Z Li, J A Christians et al. Probing perovskite inhomogeneity beyond the surface: TOF-SIMS analysis of halide perovskite photovoltaic devices. ACS Appl Mater Interfaces, 10, 28541(2018).

    [99] S P Harvey, F Zhang, A Palmstrom et al. Mitigating measurement artifacts in TOF-SIMS analysis of perovskite solar cells. ACS Appl Mater Interfaces, 11, 30911(2019).

    [100] M V Lee, S R Raga, Y Kato et al. Transamidation of dimethylformamide during alkylammonium lead triiodide film formation for perovskite solar cells. J Mater Res, 32, 45(2017).

    [101] W C Lin, A Kovalsky, Y C Wang et al. Interpenetration of CH3NH3PbI3 and TiO2 improves perovskite solar cells while TiO2 expansion leads to degradation. Phys Chem Chem Phys, 19, 21407(2017).

    [102] B Yang, J Keum, O S Ovchinnikova et al. Deciphering halogen competition in organometallic halide perovskite growth. J Am Chem Soc, 138, 5028(2016).

    [103] J A Christians, P Schulz, J S Tinkham et al. Tailored interfaces of unencapsulated perovskite solar cells for >1, 000 hour operational stability. Nat Energy, 3, 68(2018).

    [104] J Kim, Y Lee, B Gil et al. A Cu2O–CuSCN nanocomposite as a hole-transport material of perovskite solar cells for enhanced carrier transport and suppressed interfacial degradation. ACS Appl Energy Mater, 3, 7572(2020).

    [105] F R Tan, H R Tan, M I Saidaminov et al. In situ back-contact passivation improves photovoltage and fill factor in perovskite solar cells. Adv Mater, 31, 1807435(2019).

    [106] A A B Baloch, F H Alharbi, G Grancini et al. Analysis of photocarrier dynamics at interfaces in perovskite solar cells by time-resolved photoluminescence. J Phys Chem C, 122, 26805(2018).

    [107] Y Lv, B Cai, Y H Wu et al. High performance perovskite solar cells using TiO2 nanospindles as ultrathin mesoporous layer. J Energy Chem, 27, 951(2018).

    [108] D Guo, D Bartesaghi, H Wei et al. Photoluminescence from radiative surface states and excitons in methylammonium lead bromide perovskites. J Phys Chem Lett, 8, 4258(2017).

    [109] X J Zhu, M Y Du, J S Feng et al. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew Chem, 133, 4284(2021).

    [110] C Yang, H Wang, Y Miao et al. Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%. Am Chem Soc, 6, 2690(2021).

    [111] M Y Kuo, N Spitha, M P Hautzinger et al. Distinct carrier transport properties across horizontally vs vertically oriented heterostructures of 2D/3D perovskites. J Am Chem Soc, 143, 4969(2021).

    [112] Y C Pu, H C Fan, T W Liu et al. Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: Interfacial charge carrier dynamics and photocatalysis. J Mater Chem A, 5, 25438(2017).

    [113] E Nouri, M R Mohammadi, Z X Xu et al. Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter. Phys Chem Chem Phys, 20, 2388(2018).

    [114] F J Ramos, S Jutteau, J Posada et al. Highly efficient MoOx-free semitransparent perovskite cell for 4 T tandem application improving the efficiency of commercially-available Al-BSF silicon. Sci Rep, 8, 16139(2018).

    [115] W H Zhang, Y Ding, Y Jiang et al. Simultaneously enhanced Jsc and FF by employing two solution-processed interfacial layers for inverted planar perovskite solar cells. RSC Adv, 7, 39523(2017).

    [116] N F Montcada, J M Marín-Beloqui, W Cambarau et al. Analysis of photoinduced carrier recombination kinetics in flat and mesoporous lead perovskite solar cells. ACS Energy Lett, 2, 182(2017).

    [117] L Z Zhu, J J Ye, X H Zhang et al. Performance enhancement of perovskite solar cells using a La-doped BaSnO3 electron transport layer. J Mater Chem A, 5, 3675(2017).

    [118] T Ye, J Xing, M Petrović et al. Temperature effect of the compact TiO2 layer in planar perovskite solar cells: An interfacial electrical, optical and carrier mobility study. Sol Energy Mater Sol Cells, 163, 242(2017).

    [119] E Serpetzoglou, I Konidakis, G Kakavelakis et al. Improved carrier transport in perovskite solar cells probed by femtosecond transient absorption spectroscopy. ACS Appl Mater Interfaces, 9, 43910(2017).

    [120] M I Dar, M Franckevičius, N Arora et al. High photovoltage in perovskite solar cells: New physical insights from the ultrafast transient absorption spectroscopy. Chem Phys Lett, 683, 211(2017).

    [121] Y B Gao, Y J Wu, Y Liu et al. Interface and grain boundary passivation for efficient and stable perovskite solar cells: The effect of terminal groups in hydrophobic fused benzothiadiazole-based organic semiconductors. Nanoscale Horizons, 5, 1574(2020).

    [122] W Q Wu, J X Zhong, J F Liao et al. Spontaneous surface/interface ligand-anchored functionalization for extremely high fill factor over 86% in perovskite solar cells. Nano Energy, 75, 104929(2020).

    [123] D Ghosh, D K Chaudhary, M Y Ali et al. All-inorganic quantum dot assisted enhanced charge extraction across the interfaces of bulk organo-halide perovskites for efficient and stable pin-hole free perovskite solar cells. Chem Sci, 10, 9530(2019).

    [124] A Bera, A Bera, A D Sheikh et al. Fast crystallization and improved stability of perovskite solar cells with Zn2SnO4 electron transporting layer: Interface matters. ACS Appl Mater Interfaces, 7, 28404(2015).

    [125] M A Afroz, C A Aranda, N K Tailor et al. Impedance spectroscopy for metal halide perovskite single crystals: Recent advances, challenges, and solutions. ACS Energy Lett, 6, 3275(2021).

    [126] K Jäger, J Sutter, M Hammerschmidt et al. Prospects of light management in perovskite/silicon tandem solar cells. Nanophotonics, 10, 1991(2021).

    [127] B Chen, Z J Yu, S Manzoor et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 4, 850(2020).

    [128] C Y Xu, W Hu, G Wang et al. Coordinated optical matching of a texture interface made from demixing blended polymers for high-performance inverted perovskite solar cells. ACS Nano, 14, 196(2020).

    [129] M Filipič, P Löper, B Niesen et al. CH3NH3PbI3 perovskite / silicon tandem solar cells: Characterization based optical simulations. Opt Express, 23, A263(2015).

    [130] M I Hossain, A M Saleque, S Ahmed et al. Perovskite/perovskite planar tandem solar cells: A comprehensive guideline for reaching energy conversion efficiency beyond 30%. Nano Energy, 79, 105400(2021).

    [131] Y Liu, H Zhang, Y P Zhang et al. Influence of hole transport layers on internal absorption, charge recombination and collection in HC(NH2)2PbI3 perovskite solar cells. J Mater Chem A, 6, 7922(2018).

    [132] J Bisquert, M Janssen. From frequency domain to time transient methods for halide perovskite solar cells: The connections of IMPS, IMVS, TPC, and TPV. J Phys Chem Lett, 12, 7964(2021).

    [133] M Neukom, S Züfle, S Jenatsch et al. Opto-electronic characterization of third-generation solar cells. Sci Technol Adv Mater, 19, 291(2018).

    [134] D Saranin, P Gostischev, D Tatarinov et al. Copper iodide interlayer for improved charge extraction and stability of inverted perovskite solar cells. Materials, 12, 1406(2019).

    [135] A Pockett, M J Carnie. Ionic influences on recombination in perovskite solar cells. ACS Energy Lett, 2, 1683(2017).

    [136] B C O’Regan, P R F Barnes, X E Li et al. Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: Separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J–V hysteresis. J Am Chem Soc, 137, 5087(2015).

    [137] O J Sandberg, K Tvingstedt, P Meredith et al. Theoretical perspective on transient photovoltage and charge extraction techniques. J Phys Chem C, 123, 14261(2019).

    [138] Y Lei, L Y Gu, W W He et al. Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture. J Mater Chem A, 4, 5474(2016).

    [139] H Chen, K M Li, H Liu et al. Dependence of power conversion properties of hole-conductor-free mesoscopic perovskite solar cells on the loading of perovskite crystallites. Org Electron, 61, 119(2018).

    [140] F R Tan, S C Qu, Q W Jiang et al. Interpenetrated inorganic hybrids for efficiency enhancement of PbS quantum dot solar cells. Adv Energy Mater, 4, 1400512(2014).

    [141] D Hwang, J S Jin, H Lee et al. Hierarchically structured Zn2SnO4 nanobeads for high-efficiency dye-sensitized solar cells. Sci Rep, 4, 7353(2014).

    [142] I Mora-Seró, J Bisquert, F Fabregat-Santiago et al. Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells. Nano Lett, 6, 640(2006).

    [143] P P Boix, Y H Lee, F Fabregat-Santiago et al. From flat to nanostructured photovoltaics: Balance between thickness of the absorber and charge screening in sensitized solar cells. ACS Nano, 6, 873(2012).

    [144] M Bag, L A Renna, R Y Adhikari et al. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J Am Chem Soc, 137, 13130(2015).

    [145] X Q Chen, Y Shirai, M Yanagida et al. Effect of light and voltage on electrochemical impedance spectroscopy of perovskite solar cells: An empirical approach based on modified randles circuit. J Phys Chem C, 123, 3968(2019).

    [146] F R Tan, M I Saidaminov, H R Tan et al. Dual coordination of Ti and Pb using bilinkable ligands improves perovskite solar cell performance and stability. Adv Funct Mater, 30, 2005155(2020).

    [147] H M Yi, D Wang, M A Mahmud et al. Bilayer SnO2 as electron transport layer for highly efficient perovskite solar cells. ACS Appl Energy Mater, 1, 6027(2018).

    [148] V M Le Corre, E A Duijnstee, O El Tambouli et al. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett, 6, 1087(2021).

    [149] M T Khan, A Almohammedi, S Kazim et al. Electrical methods to elucidate charge transport in hybrid perovskites thin films and devices. Chem Rec, 20, 452(2020).

    [150] N Liu, P Liu, H Zhou et al. Understanding the defect properties of quasi-2D halide perovskites for photovoltaic applications. J Phys Chem Lett, 11, 3521(2020).

    [151] D Shi, V Adinolfi, R Comin et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 347, 519(2015).

    [152] P C Zhu, S Gu, X Luo et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv Energy Mater, 10, 1903083(2020).

    [153] M U Rothmann, W Li, J Etheridge et al. Microstructural characterisations of perovskite solar cells - from grains to interfaces: Techniques, features, and challenges. Adv Energy Mater, 7, 1700912(2017).

    [154] N Klein-Kedem, D Cahen, G Hodes. Effects of light and electron beam irradiation on halide perovskites and their solar cells. Acc Chem Res, 49, 347(2016).

    [155] E Edri, S Kirmayer, S Mukhopadhyay et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3–xClx perovskite solar cells. Nat Commun, 5, 3461(2014).

    [156] R D Fan, Y Huang, L G Wang et al. The progress of interface design in perovskite-based solar cells. Adv Energy Mater, 6, 1600460(2016).

    [157] E Edri, S Kirmayer, A Henning et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett, 14, 1000(2014).

    [158] W S Yang, B W Park, E H Jung et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 356, 1376(2017).

    [159] J J Shi, X Xu, D M Li et al. Interfaces in perovskite solar cells. Small, 11, 2472(2015).

    [160] R Wang, J Xue, K L Wang et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 366, 1509(2019).

    Tools

    Get Citation

    Copy Citation Text

    Wanlong Wang, Dongyang Zhang, Rong Liu, Deepak Thrithamarassery Gangadharan, Furui Tan, Makhsud I. Saidaminov. Characterization of interfaces: Lessons from the past for the future of perovskite solar cells[J]. Journal of Semiconductors, 2022, 43(5): 051202

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Oct. 12, 2021

    Accepted: --

    Published Online: Jun. 10, 2022

    The Author Email:

    DOI:10.1088/1674-4926/43/5/051202

    Topics