Photonic Sensors, Volume. 7, Issue 2, 97(2017)
Optofluidic Refractive Index Sensor Based on Partial Reflection
[1] [1] D. Psaltis, S. R. Quake, and C. H. Yang, “Insight review: developing optofluidic technology through the fusion of microfluidics and optics,” Nature, 2006, 442(7101): 381–386.
[2] [2] C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nature Photonics, 2007, 1(2): 106–114.
[3] [3] D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, et al., “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proceedings of the National Academy of Sciences, 2004, 101(34): 12434–12438.
[4] [4] B. T. Mayers, D. V. Vezenov, V. I. Vullev, and G. M. Whitesides, “Arrays and cascades of fluorescent liquid-liquid waveguides: broadband light sources for spectroscopy in microchannels,” Analytical Chemistry, 2005, 77(5): 1310–1316.
[5] [5] X. L. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab on a Chip, 2007, 7(10): 1303–1308.
[6] [6] P. Fei, Z. He, C. Zheng, T. Chen, Y. Men, and Y. Huang, “Discretely tunable optofluidic compound microlenses,” Lab on a Chip, 2011, 11(17): 2835–2841.
[7] [7] A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1×4 switch,” Optics Express, 2008, 16(18): 13499–13508.
[8] [8] W. Z. Song and D. Psaltis, “Electrically tunable optofluidic light switch for reconfigurable solar lighting,” Lab on a Chip, 2013, 13(14): 2708–2713.
[9] [9] Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “Optofluidic variable aperture,” Optics Letters, 2008, 33(6): 548–550.
[10] [10] C. L. Song, N. T. Nguyen, A. K. Asundi, and C. L. N. Low, “Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure,” Optics Letters, 2011, 36(10): 1767–1769.
[11] [11] Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Optics Express, 2006, 14(2): 696–701.
[12] [12] M. Aas, A. Jonas, A. Kiraz, O. Brzobohaty, J. Jezek, Z. Pilat, and P. Zemanek, “Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching,” Optics Express, 2013, 21(18): 21380–21394.
[13] [13] C. Grillet, P. Domachuk, V. Ta'eed, E. M gi, J. Bolger, B. Eggleton, et al., “Compact tunable microfluidic interferometer,” Optics Express, 2004, 12(22): 5440–5447.
[14] [14] Y. Zou, Z. Hen, X. Hen, Z. Di, and X. Chen, “An integrated tunable interferometer controlled by liquid diffusion in polydimethylsiloxane,” Optics Express, 2012, 20(17): 18931–18936.
[15] [15] M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable, self-assembled diffraction gratings,” Small, 2006, 2(11): 1292–1298.
[16] [16] J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Optics Letters, 2010, 35(11): 1890–1892.
[17] [17] P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, et al., “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Applied Physics Letters, 2013, 102(16): 163701-1–163701-4.
[18] [18] A. A. P. Trichet, J. Foster, N. E. Omori, D. James, P. R. Dolan, G. M. Hughes, et al., “Open-access optical microcavities for lab-on-a-chip refractive index sensing,” Lab on a Chip, 2014, 14(21): 4244–4249.
[19] [19] Z. Xu, K. Han, I. Khan, X. Wang, and G. L. Liu, “Liquid refractive index sensing independent of opacity using an optofluidic diffraction sensor,” Optics Letters, 2014, 39(20): 6082–6085.
[20] [20] C. Wu, M. L. V. Tse, Z. Liu, B. O. Guan, A. P. Zhang, C. Lu, et al., “In-line microfluidic integration of photonic crystal fibers as a highly sensitive refractometer,” Analyst, 2014, 139(21): 5422–5429.
[21] [21] X. D. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nature Photonics, 2011, 5(10): 591–297.
[22] [22] D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nature Photonics, 2011, 5(10): 583–590.
[23] [23] L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab on a Chip, 2012, 12(19): 3543–3551.
[24] [24] P. J. Viskari and J. P. Landers, “Unconventional detection methods for microfluidic devices,” Electrophoresis, 2006, 27(9): 1797–1810.
[25] [25] Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-optic surface plasmon resonance sensor with multi-alternating metal layers for biological measurement,” Photonic Sensors, 2013, 3(3): 202–207.
[26] [26] J. Zhu, L. Qin, S. Song, J. Zhong, and S. Lin, “Design of a surface plasmon resonance sensor based on grating connection,” Photonic Sensors, 2015, 5(2): 159–165.
[27] [27] L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab on a Chip, 2010, 10(8): 1072–1078.
[28] [28] M. I. Lapsley, I. K. Chiang, Y. B. Zheng, X. Y. Ding, X. L. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab on a Chip, 2011, 11(10): 1795–1800.
[29] [29] W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Applied Physics Letters, 2006, 89(20): 203901-1–203901-3.
[30] [30] Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry-Pérot cavity biosensor with integrated flow-through micro-/ nanochannels,” Applied Physics Letters, 2011, 98(4): 041104-1–041104-3.
[31] [31] L. Q. Ren, X. Wu, M. Li, X. W. Zhang, L. Y. Liu, and L. Xu, “Ultrasensitive label-free coupled optofluidic ring laser sensor,” Optics Letters, 2012, 37(18): 3873–3875.
[32] [32] M. Li, X. Wu, L. Y. Liu, X. D. Fan, and L. Xu, “Self-Referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Analytical Chemistry, 2013, 85(19): 9328–9332.
[33] [33] W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Applied Physics Letters, 2005, 86(15): 151122-1–151122-3.
[34] [34] F. Xu, G. Brambilla, and Y. Q. Lu, “A microfluidic refractometric sensor based on gratings in optical fibre microwires,” Optics Express, 2009, 17(23): 20866–20871.
[35] [35] J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated threedimensional photonic crystal,” Applied Physics Letters, 2008, 92(7): 071108-1–071107-3.
[36] [36] A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, et al., “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Applied Physics Letters, 2011, 98(22): 221109-1–221109-3.
[37] [37] Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-optic surface plasmon resonance sensor with multi-alternating metal layers for biological measurement,” Photonic Sensors, 2013, 3(3): 202–207.
[38] [38] J. Zhu, L. Qin, S. Song, J. Zhong, and S. Lin, “Design of a surface plasmon resonance sensor based on grating connection,” Photonic Sensors, 2015, 5(2): 159–165.
[39] [39] T. J. Huang, M. I. Lapsley, S. C. S. Lin, and X. L. Mao, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Applied Physics Letters, 2009, 95(8): 083507-1–083507-3.
[40] [40] E. Weber and M. J. Vellekoop, “Optofluidic micro-sensors for the determination of liquid concentrations,” Lab on a Chip, 2012, 12(19): 3754–3759.
[41] [41] D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nature Protocols, 2010, 5(3): 491–502.
Get Citation
Copy Citation Text
Lei ZHANG, Zhang ZHANG, Yichuan WANG, Meiying YE, Wei FANG, Limin TONG. Optofluidic Refractive Index Sensor Based on Partial Reflection[J]. Photonic Sensors, 2017, 7(2): 97
Category: Regular
Received: Aug. 12, 2016
Accepted: Sep. 22, 2016
Published Online: May. 9, 2017
The Author Email: ZHANG Lei (zhang_lei@zju.edu.cn)