Journal of Inorganic Materials, Volume. 39, Issue 9, 1005(2024)
[1] WANG W L, GANG Y, PENG J et al. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries[J]. Adv. Funct. Mater., 2111727(2022).
[2] MENG X Y, LIU Y Z, WANG Z Y et al. A quasi-solid-state rechargeable cell with high energy and superior safety enabled by stable redox chemistry of Li2S in gel electrolyte[J]. Energy Environ. Sci., 2278(2021).
[3] CHE H Y, CHEN S L, XIE Y Y et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J]. Energy Environ. Sci., 1075(2017).
[4] LI W K, ZHAO N, BI Z J et al. Na3Zr2Si2PO12 ceramic electrolytes for Na-ion battery: preparation using spray-drying method and its property[J]. J. Inorg. Mater., 189(2022).
[6] KIM K J, BALAISH M, WADAGUCHI M et al. Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces[J]. Adv. Energy Mater., 2002689(2021).
[7] GAO H, GUO B, SONG J et al. A composite gel-polymer/glass- fiber electrolyte for sodium-ion batteries[J]. Adv. Energy Mater., 1402235(2015).
[8] LIU Y Z, MENG X Y, SHI Y et al. Long-life quasi-solid-state anode-free batteries enabled by Li compensation coupled interface engineering[J]. Adv. Mater., e2305386(2023).
[9] DU G Y, TAO M L, LI J et al. Low-operating temperature, high- rate and durable solid-state sodium-ion battery based on polymer electrolyte and Prussian blue cathode[J]. Adv. Energy Mater., 1903351(2020).
[10] PENG J, ZHANG W, LIU Q N et al. Prussian blue analogues for sodium-ion batteries: past, present, and future[J]. Adv. Mater., 2108384(2022).
[11] LU Y H, WANG L, CHENG J G et al. Prussian blue: a new framework of electrode materials for sodium batteries[J]. Chem. Commun., 6544(2012).
[12] SÅNGELAND C, MOGENSEN R, BRANDELL D et al. Stable cycling of sodium metal all-solid-state batteries with polycarbonate- based polymer electrolytes[J]. ACS Appl. Poly. Mater., 825(2019).
[13] KIM T, AHN S H, SONG Y Y et al. Prussian blue-type sodium-ion conducting solid electrolytes for all solid-state batteries[J]. Angew. Chem. Int. Ed., e202309852(2023).
[15] LIU Y, FAN S, GAO Y et al. Isostructural synthesis of iron-based Prussian blue analogs for sodium-ion batteries[J]. Small, e2302687(2023).
[17] YOU Y, YU X Q, YIN Y X et al. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries[J]. Nano Res., 117(2014).
[18] REN W H, QIN M S, ZHU Z X et al. Activation of sodium storage sites in Prussian blue analogues
[19] ZHANG H, GAO Y, PENG J et al. Prussian blue analogues with optimized crystal plane orientation and low crystal defects toward 450 Wh·kg-1 alkali-ion batteries[J]. Angew. Chem. Int. Ed., e202303953(2023).
[21] JIANG M, HOU Z, MA H et al. Resolving deactivation of low-spin Fe sites by redistributing electron density toward high- energy sodium storage[J]. Nano Lett., 10423(2023).
[23] NIU Y B, GUO Y J, YIN Y X et al. High-efficiency cathode sodium compensation for sodium-ion batteries[J]. Adv. Mater., e2001419(2020).
Get Citation
Copy Citation Text
Kunpeng WANG, Zhaolin LIU, Cunsheng LIN, Zhiyu WANG.
Category:
Received: Feb. 4, 2024
Accepted: --
Published Online: Dec. 13, 2024
The Author Email: Zhiyu WANG (zywang@dlut.edu.cn)