Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1413(2024)
Research Progress and Modification Methods of Dielectric Energy Storage Ceramic Thin Films
[1] [1] WANG G, LU Z, LI Y, et al. Electroceramics for high-energy density capacitors: Current status and future perspectives[J]. Chem Rev, 2021, 121: 6124-6172.
[2] [2] LIU G, LI Y, SHI M, et al. An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability[J]. Ceram Int, 2019, 45(15): 19189-19196.
[3] [3] GUO B, ZHANG L, DONG J, et al. Enhanced energy storage properties of ZrO2-doped (Na0.5Bi0.5)0.4Sr0.6TiO3 Pb-free relaxor ferroelectric ceramics[J]. Ceram Int, 2021, 47(6): 8545-8554.
[4] [4] KHESRO A, KHAN F A, MUHAMMAD R, et al. Energy storage performance of Nd3+-doped BiFeO3-BaTiO3-based lead-free ceramics[J]. Ceram Int, 2022, 48(20): 29938-29943.
[5] [5] LI Z, WANG Z, YANG Q, et al. Phase transition and energy storage properties of Bi0.5Na0.5TiO3-Bi(Mg2/3Nb1/3)O3 lead-free ceramics[J]. Ceram Int, 2023, 49(6): 9615-9621.
[6] [6] HAN D, WANG C, ZENG Z, et al. Ultrahigh energy efficiency of (1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3-xBi(Mg0.5Sn0.5)O3 lead-free ceramics[J]. J Alloys Compd, 2022, 902: 163721.
[7] [7] ZHANG L, WANG Z, LI Y, et al. Enhanced energy storage performance in Sn doped Sr0.6(Na0.5Bi0.5)0.4TiO3 lead-free relaxor ferroelectric ceramics[J]. J Eur Ceram Soc, 2019, 39(10): 3057-3063.
[8] [8] WANG G, LU Z, LI J, et al. Lead-free (Ba,Sr)TiO3-BiFeO3 based multilayer ceramic capacitors with high energy density[J]. J Eur Ceram Soc, 2020, 40(4): 1779-1783.
[9] [9] WANG X, FAN Y, BIN Z, et al. High discharge energy density in novel K1/2Bi1/2TiO3-BiFeO3 based relaxor ferroelectrics[J]. J Eur Ceram Soc, 2022, 42(15): 7381-7387.
[10] [10] PENG X, PU Y, DU X, et al. Optical transmittance and energy storage properties of potassium sodium niobate glass-ceramics[J]. J Eur Ceram Soc, 2023, 43(3): 966-973.
[11] [11] WANG C, LI H, ZHANG Q, et al. Ultrahigh energy storage density in Ba0.85Ca0.15Zr0.1Ti0.9O3-based lead-free ceramics by introducing a relaxor end-member[J]. J Eur Ceram Soc, 2023, 43(15): 6844-6853.
[12] [12] SHEN Z H, LIU H X, SHEN Y, et al. Machine learning in energy storage materials[J]. Interdiscip Mater, 2022, 1(2): 175-195.
[13] [13] LI W B, ZHOU D, LIU W F, et al. High-temperature BaTiO3-based ternary dielectric multilayers for energy storage applications with high efficiency[J]. Chem Eng J, 2021, 414: 128760.
[14] [14] ZHOU S, PU Y, ZHANG X, et al. High energy density, temperature stable lead-free ceramics by introducing high entropy perovskite oxide[J]. Chem Eng J, 2022, 427: 131684.
[15] [15] ZHOU X, XUE G, SU Y, et al. Optimized dielectric energy storage performance in ZnO-modified Bi0.5Na0.5TiO3-Sr0.7Bi0.2□0.1TiO3 ceramics with composite structure and element segregation[J]. Chem Eng J, 2023, 458: 141449.
[16] [16] LU Z, BAO W, WANG G, et al. Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics[J]. Nano Energy, 2021, 79: 105423.
[17] [17] LIU H X, ZHU W X, MAO Q, et al. Single-crystalline BaZr0.2Ti0.8O3 membranes enabled high energy density in PEI-based composites for high-temperature electrostatic capacitors[J]. Adv Mater, 2023, 35(22): 9.
[18] [18] ZHANG B, CHEN X M, WU W W, et al. Outstanding discharge energy density and efficiency of the bilayer nanocomposite films with BaTiO3-dispersed PVDF polymer and polyetherimide layer[J]. Chem Eng J, 2022, 446: 136926.
[19] [19] SUN W, LU X, JIANG J, et al. Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures[J]. J Appl Phys, 2017, 121: 244101
[20] [20] FAN Z, ZHANG Y, JIANG Y, et al. Polymer composites with high energy density and charge-discharge efficiency at high temperature using aluminum oxide particles[J]. J Mater Res Technol, 2022, 18: 4367-4374.
[21] [21] ZHANG B, CHEN X M, PAN Z, et al. Superior high‐temperature energy density in molecular semiconductor/polymer all‐organic composites[J]. Adv Funct Mater, 2023, 33: 2210050.
[22] [22] LI Q, YAO F Z, LIU Y, et al. High-temperature dielectric materials for electrical energy storage[J]. Annu Rev Mater Res, 2018, 48(1): 219-243.
[23] [23] WANG R, ZHU Y, FU J, et al. Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage[J]. Nat Commun, 2023, 14(1): 2406.
[24] [24] BOUHARRAS F E, LABARDI M, TOMBARI E, et al. Dielectric characterization of core-shell structured poly(vinylidene fluoride)- grafted-BaTiO3 nanocomposites[J]. Polymers, 2023, 15(3): 595.
[25] [25] PAN Z, MAO M, ZHANG B, et al. Excellent energy storage performance in epoxy resin dielectric polymer films by a facile hot-pressing method[J]. Polymers, 2023, 15(10): 2315.
[26] [26] FAN Z, GAO S, CHANG Y, et al. Ultra-superior high-temperature energy storage properties in polymer nanocomposites via rational design of core-shell structured inorganic antiferroelectric fillers[J]. J Mater Chem A, 2023, 11(13): 7227-7238.
[27] [27] JI H, WANG D, BAO W, et al. Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation[J]. Energy Storage Mater, 2021, 38: 113-120.
[28] [28] FAN Y, WANG X, LI H, et al. Pb, Bi, and rare earth free X6R barium titanate-sodium niobate ceramics for high voltage capacitor applications[J]. Appl Phys Lett, 2023, 122: 143901.
[29] [29] LI W-B, ZHOU D, XU R, et al. BaTiO3-based multilayers with outstanding energy storage performance for high temperature capacitor applications[J]. ACS Appl Energy Mater, 2019, 2(8): 5499-5506.
[30] [30] WANG D, FAN Z, ZHOU D, et al. Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density[J]. J Mater Chem A, 2018, 6(9): 4133-4144.
[31] [31] LI Z, YANG Q, WANG C, et al. A brief review of sodium bismuth titanate-based lead-free materials for energy storage: Solid solution modification, metal/metallic oxide doping, defect engineering and process optimizing[J]. Crystals, 2023, 13(2): 295.
[32] [32] LI Z, ZHANG D, WANG C, et al. The influence of BaTiO3 content on the energy storage properties of Bi0.5Na0.5TiO3-Bi(Mg2/3Nb1/3)O3 lead-free ceramics[J]. Crystals, 2023, 13: 733.
[33] [33] WANG G, LU Z, YANG H, et al. Fatigue resistant lead-free multilayer ceramic capacitors with ultrahigh energy density[J]. J Mater Chem A, 2020, 8(22): 11414-11423.
[34] [34] MA Z, LI Y, ZHAO Y, et al. High-performance energy-storage ferroelectric multilayer ceramic capacitors via nano-micro engineering[J]. J Mater Chem A, 2023, 11(13): 7184-7192.
[35] [35] ZHAO Q L, WANG Y K, HE G P, et al. Energy storage and thermodynamics of PNZST thick films with coexisting antiferroelectric and ferroelectric phases[J]. Int J Appl Ceram Technol, 2020, 18(1): 154-161.
[36] [36] ZHOU S, PU Y, ZHAO X, et al. Dielectric temperature stability and energy storage performance of NBT‐based ceramics by introducing high‐entropy oxide[J]. J Am Ceram Soc, 2022, 105(7): 4796-4704.
[37] [37] YANG H, BAO W, LU Z, et al. High‐energy storage performance in BaTiO3‐based lead‐free multilayer ceramic capacitors[J]. J Mater Res, 2021, 36(6): 1285-1294.
[38] [38] WANG D, FAN Z, LI W, et al. High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-doped BiFeO3-BaTiO3 ceramics[J]. ACS Appl Energy Mater, 2018, 1(8): 4403-4412.
[39] [39] YANG H, LU Z, LI L, et al. Novel BaTiO3-based, Ag/Pd-compatible lead-free relaxors with superior energy storage performance[J]. ACS Appl Mater Interfaces, 2020, 12(39): 43942-43949.
[40] [40] WANG G, LI J, ZHANG X, et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity[J]. Energy Environ Sci, 2019, 12(2): 582-588.
[41] [41] LU Z, WANG G, BAO W, et al. Superior energy density through tailored dopant strategies in multilayer ceramic capacitors[J]. Energy Environ Sci, 2020, 13(9): 2938-2948.
[42] [42] LIANG Z, MA C, SHEN L, et al. Flexible lead-free oxide film capacitors with ultrahigh energy storage performances in extremely wide operating temperature[J]. Nano Energy, 2019, 57: 519-527.
[43] [43] QIAN J, HAN Y, YANG C, et al. Energy storage performance of flexible NKBT/NKBT-ST multilayer film capacitor by interface engineering[J]. Nano Energy, 2020, 74: 104862.
[44] [44] LEE H J, WON S S, CHO K H, et al. Flexible high energy density capacitors using La-doped PbZrO3 anti-ferroelectric thin films[J]. Appl Phys Lett, 2018, 112(9): 092901.
[45] [45] CHEN Q, ZHANG Y, TANG M, et al. Significantly enhanced energy storage density and efficiency in flexible Bi3.15Nd0.85Ti3O12 thin film via periodic dielectric layers[J]. J Appl Phys, 2022, 131: 114101.
[46] [46] YANG C, LV P, QIAN J, et al. Fatigue‐free and bending‐endurable flexible Mn‐doped Na0.5Bi0.5TiO3-BaTiO3-BiFeO3 film capacitor with an ultrahigh energy storage performance[J]. Adv Energy Mater, 2019, 9: 1803949.
[47] [47] YANG C, QIAN J, HAN Y, et al. Design of an all-inorganic flexible Na0.5Bi0.5TiO3-based film capacitor with giant and stable energy storage performance[J]. J Mater Chem A, 2019, 7(39): 22366-22376.
[48] [48] WANG W, QIAN J, GENG C, et al. Flexible lead-free Ba0.5Sr0.5TiO3/0.4BiFeO3-0.6SrTiO3 dielectric film capacitor with high energy storage performance[J]. Nanomaterials, 2021, 11: 3065.
[49] [49] BIN C, HOU X, XIE Y, et al. Ultrahigh energy storage performance of flexible BMT-based thin film capacitors[J]. Small, 2022, 18(4): e2106209.
[50] [50] PALNEEDI H, PEDDIGARI M, HWANG G T, et al. High- performance dielectric ceramic films for energy storage capacitors: Progress and outlook[J]. Adv Funct Mater, 2018, 28: 1803665.
[51] [51] CHU Y-H. The superparaelectric battery[J]. Science, 2021, 374(6563): 33-34.
[52] [52] ZHANG L, LIU M, REN W, et al. ALD preparation of high-k HfO2 thin films with enhanced energy density and efficient electrostatic energy storage[J]. RSC Adv, 2017, 7(14): 8388-8393.
[53] [53] SPAHR H, NOWAK C, HIRSCHBERG F, et al. Enhancement of the maximum energy density in atomic layer deposited oxide based thin film capacitors[J]. Appl Phys Lett, 2013, 103(4): 042907.
[54] [54] GAO W, YAO M, YAO X. Achieving ultrahigh breakdown strength and energy storage performance through periodic interface modification in SrTiO3 thin film[J]. ACS Appl Mater Interfaces, 2018, 10(34): 28745-28753.
[55] [55] LIU J, WANG Y, ZHAI X, et al. Energy storage properties of sol-gel-processed SrTiO3 films[J]. Materials, 2022, 16(1): 31.
[56] [56] ZHANG Y, LI W, WANG Z, et al. Ultrahigh energy storage and electrocaloric performance achieved in SrTiO3 amorphous thin films via polar cluster engineering[J]. J Mater Chem A, 2019, 7(30): 17797-17805.
[57] [57] DIAO C, LIU H, LI Z, et al. Simultaneously achieved high energy storage density and efficiency in sol-gel-derived amorphous Mn-doped SrTiO3 thin films[J]. J Alloys Compd, 2020, 845: 155636.
[58] [58] ZHANG G-F, LIU H, YAO Z, et al. Effects of Ca doping on the energy storage properties of (Sr, Ca)TiO3 paraelectric ceramics[J]. J Mater Sci Mater Electron, 2015, 26(5): 2726-2732.
[59] [59] YANG B B, GUO M Y, SONG D P, et al. Bi3.25La0.75Ti3O12 thin film capacitors for energy storage applications[J]. Appl Phys Lett, 2017, 111: 183903.
[60] [60] KIM T Y, CHOI J O, ANOOP G, et al. (111)-oriented Sn-doped BaTiO3 epitaxial thin films for ultrahigh energy density capacitors[J]. Ceram Int, 2021, 47(19): 26856-26862.
[61] [61] ZHAO Y, OUYANG J, WANG K, et al. Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins[J]. Energy Storage Mater, 2021, 39: 81-88.
[62] [62] SONG H, SON J Y. Energy storage and multiferroic properties of La-doped epitaxial BiFeO3 thin films according to La doping concentration[J]. J Energy Storage, 2023, 68: 107729.
[63] [63] LIM K W, PEDDIGARI M, ANNAPUREDDY V, et al. Energy storage characteristics of {001} oriented Pb(Zr0.52Ti0.48)O3 thin film grown by chemical solution deposition[J]. Thin Solid Films, 2018, 660: 434-438.
[64] [64] NGUYEN M D, NGUYEN C T Q, VU H N, et al. Experimental evidence of breakdown strength and its effect on energy-storage performance in normal and relaxor ferroelectric films[J]. Curr Appl Phys, 2019, 19(9): 1040-1045.
[65] [65] WANG F, CHEN J, TANG Z, et al. High energy storage properties for the lead-free NBT-0.1BFO-0.068La relaxor ferroelectric film[J]. J Alloys Compd, 2021, 854: 157306.
[66] [66] PENG B, TANG S, LU L, et al. Low-temperature-poling awakened high dielectric breakdown strength and outstanding improvement of discharge energy density of (Pb,La)(Zr,Sn,Ti)O3 relaxor thin film[J]. Nano Energy, 2020, 77: 105132.
[67] [67] ZHANG Y, LI W, WANG Z, et al. Perovskite Sr1-x(Na0.5Bi0.5)xTi0.99Mn0.01O3 thin films with defect dipoles for high energy-storage and electrocaloric performance[J]. ACS Appl Mater Interfaces, 2019, 11(41): 37947-37954.
[68] [68] PAN H, ZENG Y, SHEN Y, et al. BiFeO3-SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance[J]. J Mater Chem A, 2017, 5(12): 5920-5926.
[69] [69] LI D, ZHOU D, WANG D, et al. Lead-free relaxor ferroelectric ceramics with ultrahigh energy storage densities via polymorphic polar nanoregions design[J]. Small, 2023, 19(8): e2206958.
[70] [70] XIE Z, YUE Z, RUEHL G, et al. Bi(Ni1/2Zr1/2)O3-PbTiO3 relaxor-ferroelectric films for piezoelectric energy harvesting and electrostatic storage[J]. Appl Phys Lett, 2014, 104: 243902.
[71] [71] ZHAO W, LIU Z, SUN Z, et al. Superparamagnetic enhancement of thermoelectric performance[J]. Nature, 2017, 549(7671): 247-251.
[72] [72] WASER R. Dielectric analysis of intergrated ceramic thin film capacitors[J]. Integ Ferroelectr, 2006, 15(1/4): 39-51.
[73] [73] CROSS L E. Relaxor ferroelectrics[J]. Ferroelectrics, 1987, 76(1): 241-267.
[74] [74] FAN J, WANG J, HE G, et al. Ultrahigh energy storage performance of a 0.75Bi0.47Na0.47Ba0.06TiO3-0.25CaTi0.8Sn0.2O3 ceramic under moderate electric fields[J]. Inorg Chem Front, 2023, 10(18): 5475-5487.
[75] [75] YANG D, TIAN J, TIAN S, et al. Composition design of BNBT-ST relaxor ferroelectric ceramics in superparaelectric state with ultrahigh energy density[J]. Ceram Int, 2023, 49(17): 27750-27757.
[76] [76] CAO W, CHEN P, LIN R, et al. Boosting energy-storage performance in lead-free ceramics via polyphase engineering in the superparaelectric state[J]. Compos Part B Eng, 2023, 255: 110630.
[77] [77] PAN H, LAN S, XU S, et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics[J]. Science, 2021, 374(6563): 100-104.
[78] [78] WANG K, OUYANG J, WUTTIG M, et al. Superparaelectric (Ba0.95,Sr0.05)(Zr0.2,Ti0.8)O3 ultracapacitors[J]. Adv Energy Mater, 2020, 10(37): 2001778.
[79] [79] LIU Y, YANG B, LAN S, et al. Perspectives on domain engineering for dielectric energy storage thin films[J]. Appl Phys Lett, 2022, 120: 150501.
[80] [80] GLINCHUK M D, ELISEEV E A, MOROZOVSKA A N. Superparaelectric phase in the ensemble of noninteracting ferroelectric nanoparticles[J]. Phys Rev B, 2008, 78: 134107.
[81] [81] LI Y Z, WANG Z J, BAI Y, et al. High energy storage performance in Ca-doped PbZrO3 antiferroelectric films[J]. J Eur Ceram Soc, 2020, 40(4): 1285-1292.
[82] [82] TANG Z, HU S, YAO D, et al. Enhanced energy-storage density and temperature stability of Pb0.89La0.06Sr0.05(Zr0.95Ti0.05)O3 anti-ferroelectric thin ?lm capacitor[J]. J Materiomics, 2022, 8(1): 239-246.
[83] [83] ZHANG Y, LI X, SONG J, et al. AgNbO3 antiferroelectric film with high energy storage performance[J]. J Materiomics, 2021, 7(6): 1294-1300.
[84] [84] ALI F, LIU X, ZHOU D, et al. Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage[J]. J Appl Phys, 2017, 122(14): 144105.
[85] [85] ZHANG W L, MAO Y H, CUI L, et al. Impact of the radiation effect on the energy storage density and wake-up behaviors of antiferroelectric-like Al-doped HfO2 thin films[J]. Phys Chem Chem Phys, 2020, 22(38): 21893-21899.
[86] [86] PAYNE A, BREWER O, LEFF A, et al. Dielectric, energy storage, and loss study of antiferroelectric-like Al-doped HfO2 thin films[J]. Appl Phys Lett, 2020, 117(22): 221104.
[87] [87] FANG Y, BAI Y, LI Y Z, et al. Improved energy storage performance of PbZrO3 antiferroelectric thin films crystallized by microwave radiation[J]. Rsc Adv, 2021, 11(30): 18387-18394.
[88] [88] NGUYEN M D, RIJNDERS G. Electric field-induced phase transition and energy storage performance of highly-textured PbZrO3 antiferroelectric films with a deposition temperature dependence[J]. J Eur Ceram Soc, 2018, 38(15): 4953-4961.
[89] [89] LI Y Z, LIN J L, BAI Y, et al. Ultrahigh-energy storage properties of (PbCa)ZrO3 antiferroelectric thin films via constructing a pyrochlore nanocrystalline structure[J]. ACS Nano, 2020, 14(6): 6857-6865.
[90] [90] SHU L, ZHANG X, LI W, et al. Phase-pure antiferroelectric AgNbO3 films on Si substrates: Chemical solution deposition and phase transitions[J]. J Mater Chem A, 2022, 10(23): 12632-12642.
[91] [91] ZHAI X, CHENG H, OUYANG J, et al. Achieving a high energy storage density in Ag(Nb,Ta)O3 antiferroelectric films via nanograin engineering[J]. J Adv Ceram, 2023, 12(1): 196-206.
[92] [92] HOU C, HUANG W, ZHAO W, et al. Ultrahigh energy density in SrTiO3 film capacitors[J]. ACS Appl Mater Interfaces, 2017, 9(24): 20484-20490.
[93] [93] ZHU H, LIU M, ZHANG Y, et al. Increasing energy storage capabilities of space-charge dominated ferroelectric thin films using interlayer coupling[J]. Acta Mater, 2017, 122: 252-258.
[94] [94] PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science, 2019, 365(6453): 578-582.
[95] [95] CAI H, YAN S, ZHOU M, et al. Significantly improved energy storage properties and cycling stability in La-doped PbZrO3 antiferroelectric thin films by chemical pressure tailoring[J]. J Eur Ceram Soc, 2019, 39(15): 4761-4769.
[96] [96] NGUYEN M D, TRINH T T, DANG H T, et al. Understanding the effects of electric-field-induced phase transition and polarization loop behavior on the energy storage performance of antiferroelectric PbZrO3 thin films[J]. Thin Solid Films, 2020, 697: 137794.
[97] [97] NGUYEN M D. Towards low-temperature processing of lead-free BZT thin films for high-temperature energy storage performance[J]. J Alloys Compd, 2023, 959: 170597.
[98] [98] WU M, YU S, WANG X, et al. Influence of substrate temperature on the energy storage properties of bismuth magnesian niobium thin films prepared by magnetron sputtering[J]. Ceram Int, 2021, 47(6): 8265-8270.
[99] [99] HUANG R, WANG H, TAO C, et al. Evolution of polarization crystallites in 0.92BaTiO3-0.08Bi(Ni0.5Zr0.5)O3 microcrystal- amorphous composite thin film with high energy storage capability and thermal stability[J]. Chem Eng J, 2022, 433: 133579.
[100] [100] LI Z, LIU H, YAO Z, et al. Novel BiAlO3 dielectric thin films with high energy density[J]. Ceram Int, 2019, 45(17): 22523-22527.
[101] [101] LI X, SUN Z, SUN Y, et al. Effect of argon-oxygen ratio on dielectric and energy storage properties of Ba(Zr0.35Ti0.65)O3 thin films[J]. Ceram Int, 2022, 48(20): 29951-29958.
[102] [102] REDDY S R, PRASAD V V B, BYSAKH S, et al. Superior energy storage performance and fatigue resistance in ferroelectric BCZT thin films grown in an oxygen-rich atmosphere[J]. J Mater Chem C, 2019, 7(23): 7073-7082.
[103] [103] ZHU H, FENG G, CHEN X, et al. Energy storage and leakage current characteristics of low-temperature-derived Pb0.8La0.1Ca0.1Ti0.975O3 thin films tailored by an annealing atmosphere[J]. J Phys Chem C, 2021, 125(5): 2831-2840.
[104] [104] WANG P, WANG X S, LI G R, et al. Nanocrystalline engineering induced high energy storage performances of fatigue-free Ba2Bi3.9Pr0.1Ti5O18 ferroelectric thin films[J]. ACS Appl Mater Interfaces, 2022, 14(15): 17642-17651.
[105] [105] YANG B B, TONG H Y, LAN S, et al. Annealing atmosphere- dependent capacitive energy storage[J]. Rare Met, 2023, 42(5): 1465-1471.
[106] [106] FANG X G, LIN S X, ZHANG A H, et al. Effect of bottom electrodes on polarization switching and energy storage properties in Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thin films[J]. Solid State Commun, 2015, 219: 39-42.
[107] [107] GE J, DONG X, CHEN Y, et al. Enhanced polarization switching and energy storage properties of Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thin films with LaNiO3 oxide top electrodes[J]. Appl Phys Lett, 2013, 102(14): 142905.
[108] [108] MA Q, LI X, ZHANG Y, et al. Dielectric and antiferroelectric properties of AgNbO3 films deposited on different electrodes[J]. Coatings, 2022, 12(12): 1826.
[109] [109] LI Y, FANG X, HU F, et al. The effect of bottom electrode on structure and electrical properties of BaZr0.15Ti0.85O3 films on SrTiO3 substrates[J]. J Mater Sci Mater Electron, 2023, 34(8): 746.
[110] [110] ZHAO Q, LEI H, HE G, et al. Effects of thickness on energy storage of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric films deposited on LaNiO3 electrodes[J]. Ceram Int, 2016, 42(1): 1314-1317.
[111] [111] ZHU X, SHI P, LOU X, et al. Remarkably enhanced energy storage properties of lead-free Ba0.53Sr0.47TiO3 thin films capacitors by optimizing bottom electrode thickness[J]. J Eur Ceram Soc, 2020, 40(15): 5475-5482.
[112] [112] HU G, MA C, WEI W, et al. Enhanced energy density with a wide thermal stability in epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 thin films[J]. Appl Phys Lett, 2016, 109: 193904.
[113] [113] ZHU X, GUO M, SUN B, et al. Significantly enhanced energy storage density of epitaxial Ba0.53Sr0.47TiO3 thin films by optimizing bottom electrode material[J]. Ceram Int, 2020, 46(9): 13900-13906.
[114] [114] TONG S, MA B, NARAYANAN M, et al. Lead lanthanum zirconate titanate ceramic thin films for energy storage[J]. ACS Appl Mater Interfaces, 2013, 5(4): 1474-1480.
[115] [115] WU S, XU L, ZHU K, et al. Improved piezoelectricity and energy storage performance simultaneously achieved in [001]-preferentially oriented Bi0.5Na0.5TiO3-BaTiO3-BiMnO3 thin films grown on Nb-doped SrTiO3 single-crystalline substrates[J]. J Eur Ceram Soc, 2021, 41(4): 2539-2547.
[116] [116] ZHENG D, GENG W, QIAO X, et al. High energy storage of La-doped PbZrO3 thin films using LaNiO3/Pt composite electrodes with wide temperature range[J]. J Sol Gel Sci Technol, 2021, 98(1): 264-270.
[117] [117] LV P, HUANG S, CHENG X, et al. Enhanced energy storage property and dielectric tunability of Na0.5Bi0.5(Ti,W,Ni)O3 thin film on Bi(Fe,Mn)O3 buffered LaNiO3(100)/Si substrate[J]. J Mater Sci Mater Electron, 2018, 29(17): 14479-14486.
[118] [118] SUI H, SUN H, XIAO S, et al. Boosting energy storage performance of relaxor Na0.5Bi0.5(Fe0.03Ti0.97)O3/Na0.5Bi0.5(Zr0.02Ti0.98)O3-based multilayer thin films under moderate electric field via aging & treating processing[J]. J Power Sources, 2021, 506: 230190.
[119] [119] XIAO S, SUN H, LIU X, et al. High-performance (Na0.5Bi0.5)(Ti0.97Fe0.03)O3- based heterostructure thin films for energy storage capacitors[J]. Ceram Int, 2022, 48(15): 21407-21415.
[120] [120] YAN C, LIU X, YUE C, et al. Outstanding enhanced breakdown field strength and energy storage properties in Na0.5Bi0.5TiO3-based thin film by the aging process[J]. J Power Sources, 2021, 508: 230331.
[121] [121] YUE C, SUN H, YAN C, et al. Optimized energy storage performance by a depolarization field in BaMn0.01Ti0.99O3/Na0.5Bi0.5TiO3 multilayer thin films[J]. J Mater Chem C, 2022, 10(28): 10356-10364.
[122] [122] YANG B, ZHANG Q, HUANG H, et al. Engineering relaxors by entropy for high energy storage performance[J]. Nat Energy, 2023, 8: 956-964.
[123] [123] HU J, LI W, TANG X, et al. Enhancement of energy storage density and efficiency of PbHfO3 doped with La antiferroelectric thin films[J]. ACS Appl Energy Mater, 2022, 6(1): 120-126.
[124] [124] NGUYEN M D. Ultrahigh energy-storage performance in lead-free BZT thin-films by tuning relaxor behavior[J]. Mater Res Bull, 2021, 133: 111072.
[125] [125] ZHAN X, HUI Z, YANG J, et al. Energy storage performances of La doping BaBi4Ti4O15 thin films capacitors[J]. Results Phys, 2023, 44: 106160.
[126] [126] SONG B, WU S, YAN H, et al. Fatigue-less relaxor ferroelectric thin films with high energy storage density via defect engineer[J]. J Mater Sci Technol, 2021, 77: 178-186.
[127] [127] WANG H, HAO H, LI D, et al. Synergistic effect enhances energy storage properties of BNT-based relaxor ferroelectric thin films[J]. Ceram Int, 2023, 49(8): 12443-12451.
[128] [128] GENG J, LI D, HAO H, et al. Tunable phase structure in Mn-doped lead-free BaTiO3 crystalline/amorphous energy storage thin films[J]. Crystals, 2023, 13(4): 649.
[129] [129] LUO B, DONG H, WANG D, et al. Large recoverable energy density with excellent thermal stability in Mn-modified NaNbO3-CaZrO3 lead-free thin films[J]. J Am Ceram Soc, 2018, 101(8): 3460-3467.
[130] [130] SONG H, SON J Y. Examining imprinted ferroelectric hysteresis loops and improved energy storage properties of Mn-doped epitaxial SrTiO3 thin films using heat treatment[J]. Mater Sci Eng B, 2022, 285: 115925.
[131] [131] LIU Y, HAO X, AN S. Significant enhancement of energy-storage performance of (Pb0.91La0.09)(Zr0.65Ti0.35)O3 relaxor ferroelectric thin films by Mn doping[J]. J Appl Phys, 2013, 114: 174102.
[132] [132] YE M, SUN Q, CHEN X, et al. Effect of Eu doping on the electrical properties and energy storage performance of PbZrO3 antiferroelectric thin films[J]. J Am Ceram Soc, 2011, 94(10): 3234-3236.
[133] [133] RATH M, MIRYALA M, MURAKAMI M, et al. Controlled piezotronic properties on recoverable energy storage density in rare-earth ions doped epitaxial PZT thin films[J]. J Phys D Appl Phys, 2019, 52: 304001.
[134] [134] SONG D P, YANG J, SUN J X, et al. Controlling the crystallization of Nd-doped Bi4Ti3O12 thin-films for lead-free energy storage capacitors[J]. J Appl Phys, 2020, 127: 224102.
[135] [135] GUO X, GE J, PONCHEL F, et al. Effect of Sn substitution on the energy storage properties of high (001)-oriented PbZrO3 thin films[J]. Thin Solid Films, 2017, 632: 93-96.
[136] [136] HAO X, ZHAI J, YAO X. Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films[J]. J Am Ceram Soc, 2009, 92(5): 1133-1135.
[137] [137] THATIKONDA S K, HUANG W, DU X, et al. Sm-doping induced large enhancement of antiferroelectric and energy storage performances of (111) oriented PbZrO3 thin films[J]. Ceram Int, 2019, 45(17): 23586-23591.
[138] [138] XIE Y, HAO H, HUANG Z, et al. Large energy-storage density with good dielectric property in bismuth sodium titanate-based thin films[J]. J Alloys Compd, 2021, 884: 161031.
[139] [139] WU S, CHEN P, ZHAI J, et al. Enhanced piezoelectricity and energy storage performances of Fe-doped BNT-BKT-ST thin films[J]. Ceram Int, 2018, 44(17): 21289-21294.
[140] [140] QIAN J, YANG C H, HAN Y J, et al. Reduced leakage current, enhanced energy storage and dielectric properties in (Ce,Mn)-codoped Ba0.6Sr0.4TiO3 thin film[J]. Ceram Int, 2018, 44(17): 20808-20813.
[141] [141] LI P, ZHAI J, SHEN B, et al. High recoverable energy storage density and large piezoelectric response in (Bi0.5Na0.5)TiO3-PbTiO3 thin films prepared by a sol-gel method[J]. J Eur Ceram Soc, 2017, 37(10): 3319-3327.
[142] [142] PAN Z, WANG P, HOU X, et al. Fatigue‐free Aurivillius phase ferroelectric thin films with ultrahigh energy storage performance[J]. Adv Energy Mater, 2020, 10: 2001536.
[143] [143] LV P, QIAN J, YANG C, et al. 4-inch ternary BiFeO3-BaTiO3- SrTiO3 thin film capacitor with high energy storage performance[J]. ACS Energy Lett, 2021, 6(11): 3873-3881.
[144] [144] DONG H, LUO B, JIN K. Structural, electrical and energy storage properties of lead-free NaNbO3-BaHfO3 thin films[J]. J Phys Chem Solids, 2022, 162: 110513.
[145] [145] YU S, ZHANG C, WU M, et al. Energy storage and dielectric properties of a novel Bi1.5MgNb1.5O7-Bi2Mg2/3Nb4/3O7 thin film[J]. Ceram Int, 2021, 47(1): 1238-1243.
[146] [146] WANG C, SUN N, LI Y, et al. Dielectric property and energy-storage performance of (100)-preferred (1-x)PbTiO3-xBi(Mg0.5Ti0.5)O3 relaxor ferroelectric thin films[J]. J Alloys Compd, 2019, 810: 151796.
[147] [147] CHO S, YUN C, KIM Y S, et al. Strongly enhanced dielectric and energy storage properties in lead-free perovskite titanate thin films by alloying[J]. Nano Energy, 2018, 45: 398-406.
[148] [148] CHEN P, WU S, LI P, et al. High recoverable energy storage density in (1-x)Bi0.5(Na0.8K0.2)0.5TiO3-xSrZrO3 thin films prepared by a sol-gel method[J]. J Eur Ceram Soc, 2018, 38(14): 4640-4645.
[149] [149] YANG B B, GUO M Y, SONG D P, et al. Energy storage properties in BaTiO3-Bi3.25La0.75Ti3O12 thin films[J]. Appl Phys Lett, 2018, 113: 183902.
[150] [150] QIAN J, LI G, ZHU K, et al. High energy storage performance and large electrocaloric response in Bi0.5Na0.5TiO3-Ba(Zr0.2Ti0.8)O3 thin films[J]. ACS Appl Mater Interfaces, 2022, 14(48): 54012-54020.
[151] [151] AFIFI M, TURKY A O, RASLY M, et al. Field-induced polarization response and energy storage behavior of lead-free BNT-BKT-SZ films[J]. Ceram Int, 2020, 46(16): 26061-26068.
[152] [152] HAN Y, JIAO P, YANG Y, et al. Energy storage properties in a Bi(Mg1/2Ti1/2)O3 modified BiFeO3-Sr0.7Bi0.2TiO3 film[J]. Appl Phys Lett, 2021, 119: 162901.
[153] [153] QI H, CHEN L, DENG S, et al. High-entropy ferroelectric materials[J]. Nat Rev Mater, 2023, 8(6): 355-356.
[154] [154] YANG B, ZHANG Y, PAN H, et al. High-entropy enhanced capacitive energy storage[J]. Nat Mater, 2022, 21(9): 1074-1080.
[155] [155] LIU M, GONG C Z, YANG B B, et al. Achieving high energy storage performances in high-entropy epitaxial Na0.5Bi0.5Ti0.7Hf0.1Zr0.1Sn0.1O3 thin film[J]. Appl Phys Lett, 2022, 121: 263903.
[156] [156] WANG Y J, LAI H C, CHEN Y A, et al. High entropy nonlinear dielectrics with superior thermally stable performance[J]. Adv Mater, 2023: e2304128.
[157] [157] SHARMA Y, LEE M C, PITIKE K C, et al. High entropy oxide relaxor ferroelectrics[J]. ACS Appl Mater Interfaces, 2022, 14(9): 11962-11970.
[158] [158] ZHANG Y, CHEN L, LIU H, et al. High‐performance ferroelectric based materials via high‐entropy strategy: Design, properties, and mechanism[J]. Infor Mater, 2023: e12488.
[159] [159] SA T, CAO Z, WANG Y, et al. Enhancement of charge and energy storage in PbZrO3 thin films by local field engineering[J]. Appl Phys Lett, 2014, 105(4): 043902.
[160] [160] LI Y Z, WANG Z J, BAI Y, et al. Enhancement of energy storage density in antiferroelectric PbZrO3 films via the incorporation of gold nanoparticles[J]. J Am Ceram Soc, 2019, 102(9): 5253-5261.
[161] [161] GUO F, SHI Z, YANG B, et al. The role of PN-like junction effects in energy storage performances for Ag2O nanoparticle dispersed lead-free K0.5Na0.5NbO3-BiMnO3 films[J]. Nanoscale, 2020, 12(14): 7544-7549.
[162] [162] SILVA J P B, SILVA J M B, OLIVEIRA M J S, et al. High‐performance ferroelectric-dielectric multilayered thin films for energy storage capacitors[J]. Adv Funct Mater, 2018, 29: 1807196.
[163] [163] MCMILLEN M, DOUGLAS A M, CORREIA T M, et al. Increasing recoverable energy storage in electroceramic capacitors using “dead-layer” engineering[J]. Appl Phys Lett, 2012, 101: 242909.
[164] [164] CHEN X, PENG B, DING M, et al. Giant energy storage density in lead-free dielectric thin films deposited on Si wafers with an artificial dead-layer[J]. Nano Energy, 2020, 78: 105390.
[165] [165] WANG K, ZHANG Y, WANG S, et al. High Energy performance ferroelectric (Ba,Sr)(Zr,Ti)O3 film capacitors integrated on Si at 400 ℃[J]. ACS Appl Mater Interfaces, 2021, 13(19): 22717-22727.
[166] [166] ZHANG T, LI W, CAO W, et al. Giant electrocaloric effect in PZT bilayer thin films by utilizing the electric field engineering[J]. Appl Phys Lett, 2016, 108: 162902.
[167] [167] ZHANG Y, LI W, XU S, et al. Interlayer coupling to enhance the energy storage performance of Na0.5Bi0.5TiO3-SrTiO3 multilayer films with the electric field amplifying effect[J]. J Mater Chem A, 2018, 6(47): 24550-24559.
[168] [168] WANG P, WANG X, LI G, et al. Interface engineering to optimize polarization and electric breakdown strength of Ba2Bi3.97Pr0.03Ti5O18/ BiFeO3 ferroelectric thin-film for high-performance capacitors[J]. Chem Eng J, 2022, 433: 133676.
[169] [169] SHEN B, LI Y, SUN N, et al. Enhanced energy-storage performance of an all-inorganic flexible bilayer-like antiferroelectric thin film via using electric field engineering[J]. Nanoscale, 2020, 12(16): 8958-8968.
[170] [170] SONG B, ZHU K, YAN H, et al. High energy storage density with high power density in Bi0.2Sr0.7TiO3/BiFeO3 multilayer thin films[J]. J Mater Chem C, 2021, 9(13): 4652-4660.
[171] [171] SUI H, SUN H, YAN C, et al. The construction of relaxor perovskite Na0.5Bi0.5(Fe0.03Ti0.97)O3/Ba(Ti1-xSrx)O3 multilayer thin film and explorations on origin of the enhanced energy storage performance[J]. Appl Surface Sci, 2021, 543: 148755.
[172] [172] ZUBKO P, JUNG D J, SCOTT J F. Space charge effects in ferroelectric thin films[J]. J Appl Phys, 2006, 100(11): 114112.
[173] [173] TAGANTSEV A K, LANDIVAR M, COLLA E, et al. Identification of passive layer in ferroelectric thin films from their switching parameters[J]. J Appl Phys, 1995, 78(4): 2623-2630.
[174] [174] ZHANG T, LI W, ZHAO Y, et al. High energy storage performance of opposite double-heterojunction ferroelectricity-insulators[J]. Adv Funct Mater, 2018, 28(10): 1706211.
[175] [175] YE Y, GUO K, CUI R, et al. Enhancing the energy storage density of Bi0.5Na0.5TiO3 thin films by adding an amorphous alumina[J]. Surf Interfaces, 2022, 33: 102229.
[176] [176] LI Z, ZHAO Y, LI W, et al. Enhanced energy storage properties of amorphous BiFeO3/Al2O3 multilayers[J]. J Mater Res Technol, 2021, 11: 1852-1858.
[177] [177] ZHANG T, YIN C, ZHANG C, et al. Self-polarization and energy storage performance in antiferroelectric-insulator multilayer thin films[J]. Compos Part B Eng, 2021, 221: 109027.
[178] [178] YIN C, ZHANG T, SHI Z, et al. High energy storage performance of all-inorganic flexible antiferroelectric-insulator multilayered thin films[J]. ACS Appl Mater Interfaces, 2022, 14(25): 28997-29006.
[179] [179] CHEN J, TANG Z, YANG B, et al. Ultra-high energy storage performances regulated by depletion region engineering sensitive to the electric field in PNP-type relaxor ferroelectric heterostructural films[J]. J Mater Chem A, 2020, 8(16): 8010-8019.
[180] [180] FAN Q, LIU M, MA C, et al. Significantly enhanced energy storage density with superior thermal stability by optimizing Ba(Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 multilayer structure[J]. Nano Energy, 2018, 51: 539-545.
[181] [181] MAHESH M L V, PAL P, PRASAD V V B, et al. Improved tunability and energy storage density properties of low-loss, lead-free (Ba0.50Sr0.50)TiO3 and Ba(Zr0.15Ti0.85)O3 bilayer thin film stacks[J]. J Electron Mater, 2021, 51(2): 727-735.
[182] [182] YUE W, LI T, YU L, et al. High energy storage density of Bi3.25La0.75Ti3O12/SrTiO3 multilayer thin films by structural design[J]. Mater Lett, 2023, 333: 133576.
[183] [183] NGUYEN M D, BIRKH?LZER Y A, HOUWMAN E P, et al. Enhancing the energy‐storage density and breakdown strength in PbZrO3/Pb0.9La0.1Zr0.52Ti0.48O3‐derived antiferroelectric/relaxor‐ferroelectric multilayers[J]. Adv Energy Mater, 2022, 12(29): 2200517.
[184] [184] BIN C, HOU X, WANG K, et al. Interlayer coupling enhanced energy storage performance in a flexible BMT-BTO/BMT multilayer ferroelectric film capacitor[J]. ACS Appl Mater Interfaces, 2022, 14(45): 50880-50889.
Get Citation
Copy Citation Text
YUE Wenfeng, YAN Tingnan, WANG Dawei. Research Progress and Modification Methods of Dielectric Energy Storage Ceramic Thin Films[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1413
Category:
Received: Sep. 4, 2023
Accepted: --
Published Online: Aug. 19, 2024
The Author Email: WANG Dawei (wangdawei102@gmail.com)