Photonics Research, Volume. 9, Issue 12, 2309(2021)

Fluorescent nanodiamonds for characterization of nonlinear microscopy systems

Mantas Žurauskas1,2, Aneesh Alex2,3, Jaena Park1, Steve R. Hood2,4, and Stephen A. Boppart1,2,5,6,7,8、*
Author Affiliations
  • 1Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • 2GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • 3GlaxoSmithKline, Collegeville, Pennsylvania 19426, USA
  • 4GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, UK
  • 5Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • 6Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • 7Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • 8Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • show less
    References(45)

    [1] N. Mazumder, N. K. Balla, G.-Y. Zhuo, Y. V. Kistenev, R. Kumar, F.-J. Kao, S. Brasselet, V. V. Nikolaev, N. A. Krivova. Label-free non-linear multimodal optical microscopy-basics, development, and applications. Front. Phys., 7, 170(2019).

    [2] S. You, R. Barkalifa, E. J. Chaney, H. Tu, J. Park, J. E. Sorrells, Y. Sun, Y.-Z. Liu, L. Yang, D. Z. Chen, M. Marjanovic, S. Sinha, S. A. Boppart. Label-free visualization and characterization of extracellular vesicles in breast cancer. Proc. Natl. Acad. Sci. USA, 116, 24012-24018(2019).

    [3] M. Žurauskas, O. Barnstedt, M. Frade-Rodriguez, S. Waddell, M. J. Booth. Rapid adaptive remote focusing microscope for sensing of volumetric neural activity. Biomed. Opt. Express, 8, 4369-4379(2017).

    [4] Y.-Z. Liu, C. Renteria, C. D. Courtney, B. Ibrahim, S. You, E. J. Chaney, R. Barkalifa, R. R. Iyer, M. Žurauskas, H. Tu, D. Llano, C. A. Christian-Hinman, S. A. Boppart. Simultaneous two-photon activation and imaging of neural activity based on spectral–temporal modulation of supercontinuum light. Neurophotonics, 7, 045007(2020).

    [5] A. Royon, N. Converset. Quality control of fluorescence imaging systems: a new tool for performance assessment and monitoring. Opt. Photonik, 12, 22-25(2017).

    [6] R. Lin, A. H. Clowsley, T. Lutz, D. Baddeley, C. Soeller. 3D super-resolution microscopy performance and quantitative analysis assessment using DNA-PAINT and DNA origami test samples. Methods, 174, 56-71(2020).

    [7] A. D. Corbett, M. Shaw, A. Yacoot, A. Jefferson, L. Schermelleh, T. Wilson, M. Booth, P. S. Salter. Microscope calibration using laser written fluorescence. Opt. Express, 26, 21887-21899(2018).

    [8] U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods, 5, 763-775(2008).

    [9] G. Grimaldi, J. J. Geuchies, W. Van Der Stam, I. Du Fossé, B. Brynjarsson, N. Kirkwood, S. Kinge, L. D. Siebbeles, A. J. Houtepen. Spectroscopic evidence for the contribution of holes to the bleach of Cd-chalcogenide quantum dots. Nano Lett., 19, 3002-3010(2019).

    [10] P. Reineck, A. Francis, A. Orth, D. W. M. Lau, R. D. V. Nixon-Luke, I. D. Rastogi, W. A. W. Razali, N. M. Cordina, L. M. Parker, V. K. A. Sreenivasan, L. J. Brown, B. C. Gibson. Brightness and photostability of emerging red and near-IR fluorescent nanomaterials for bioimaging. Adv. Opt. Mater., 4, 1549-1557(2016).

    [11] S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, Y.-C. Yu. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc., 127, 17604-17605(2005).

    [12] S. Hemelaar, P. De Boer, M. Chipaux, W. Zuidema, T. Hamoh, F. P. Martinez, A. Nagl, J. Hoogenboom, B. Giepmans, R. Schirhagl. Nanodiamonds as multi-purpose labels for microscopy. Sci. Rep., 7, 1(2017).

    [13] A. Zaitsev. Vibronic spectra of impurity-related optical centers in diamond. Phys. Rev. B, 61, 12909-12922(2000).

    [14] M. H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A. A. Rampersaud, R. Brick, C. L. Gomes, M. O. Scully, P. R. Hemmer. Fluorescent nanodiamonds: past, present, and future. Nanophotonics, 7, 1423-1453(2018).

    [15] E. Fraczek, V. G. Savitski, M. Dale, B. G. Breeze, P. Diggle, M. Markham, A. Bennett, H. Dhillon, M. E. Newton, A. J. Kemp. Laser spectroscopy of NV and NV0 colour centres in synthetic diamond. Opt. Mater. Express, 7, 2571-2585(2017).

    [16] G. Laporte, D. Psaltis. STED imaging of green fluorescent nanodiamonds containing nitrogen-vacancy-nitrogen centers. Biomed. Opt. Express, 7, 34-44(2016).

    [17] C. Laube, T. Oeckinghaus, J. Lehnert, J. Griebel, W. Knolle, A. Denisenko, A. Kahnt, J. Meijer, J. Wrachtrup, B. Abel. Controlling the fluorescence properties of nitrogen vacancy centers in nanodiamonds. Nanoscale, 11, 1770-1783(2019).

    [18] F. Trojánek, K. Ždek, B. Dzurňák, M. Kozák, P. Malý. Nonlinear optical properties of nanocrystalline diamond. Opt. Express, 18, 1349-1357(2010).

    [19] M. Kozák, F. Trojánek, B. Rezek, A. Kromka, P. Malý. Optical harmonic generation in nanocrystalline diamond. Phys. E, 44, 1300-1303(2012).

    [20] V. Pichot, O. Muller, A. Seve, A. Yvon, L. Merlat, D. Spitzer. Optical properties of functionalized nanodiamonds. Sci. Rep., 7, 14086(2017).

    [21] V. N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi. The properties and applications of nanodiamonds. Nat. Nanotechnol., 7, 11-23(2012).

    [22] A. H. Heffernan, A. D. Greentree, B. C. Gibson. Nanodiamond arrays on glass for quantification and fluorescence characterisation. Sci. Rep., 7, 9252(2017).

    [23] Y.-C. Chen, P. S. Salter, S. Knauer, L. Weng, A. C. Frangeskou, C. J. Stephen, S. N. Ishmael, P. R. Dolan, S. Johnson, B. L. Green, G. W. Morley, M. E. Newton, J. G. Rarity, M. J. Booth, J. M. Smith. Laser writing of coherent colour centres in diamond. Nat. Photonics, 11, 77-80(2017).

    [24] T. Ruf, M. Cardona, C. Pickles, R. Sussmann. Temperature dependence of the refractive index of diamond up to 925  K. Phys. Rev. B, 62, 16578-16581(2000).

    [25] M. Žurauskas, R. Barkalifa, A. Alex, M. Marjanovic, D. R. Spillman, P. Mukherjee, C. D. Neitzel, W. Lee, J. Medler, Z. Arp, M. Cleveland, S. Hood, S. A. Boppart. Assessing the severity of psoriasis through multivariate analysis of optical images from non-lesional skin. Sci. Rep., 10, 1(2020).

    [26] A. Alex, E. J. Chaney, M. Žurauskas, J. M. Criley, D. R. Spillman, P. B. Hutchison, J. Li, M. Marjanovic, S. Frey, Z. Arp, S. A. Boppart. In vivo characterization of minipig skin as a model for dermatological research using multiphoton microscopy. Exp. Dermatol., 29, 953-960(2020).

    [27] S. M. Sternisha, P. Mukherjee, A. Alex, E. J. Chaney, R. Barkalifa, B. Wan, J. H. Lee, J. Rico-Jimenez, M. Žurauskas, D. R. Spillman, S. A. Sripada, M. Marjanovic, Z. Arp, S. S. Galosy, D. S. Bhanushali, S. R. Hood, S. Bose, S. A. Boppart. Longitudinal monitoring of cell metabolism in biopharmaceutical production using label-free fluorescence lifetime imaging microscopy. Biotechnol. J., 16, e2000629(2021).

    [28] J. H. Lee, J. J. Rico-Jimenez, C. Zhang, A. Alex, E. J. Chaney, R. Barkalifa, D. R. Spillman, M. Marjanovic, Z. Arp, S. R. Hood, S. A. Boppart. Simultaneous label-free autofluorescence and multi-harmonic imaging reveals in vivo structural and metabolic changes in murine skin. Biomed. Opt. Express, 10, 5431-5444(2019).

    [29] J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, J. Wrachtrup. Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano, 3, 1959-1965(2009).

    [30] D. G. Monticone, F. Quercioli, R. Mercatelli, S. Soria, S. Borini, T. Poli, M. Vannoni, E. Vittone, P. Olivero. Systematic study of defect-related quenching of NV luminescence in diamond with time-correlated single-photon counting spectroscopy. Phys. Rev. B, 88, 155201(2013).

    [31] W. Colomb, J. Czerski, J. Sau, S. K. Sarkar. Estimation of microscope drift using fluorescent nanodiamonds as fiducial markers. J. Microsc., 266, 298-306(2017).

    [32] N. Meitav, E. N. Ribak, S. Shoham. Point spread function estimation from projected speckle illumination. Light: Sci. Appl., 5, e16048(2016).

    [33] M. Žurauskas, I. M. Dobbie, R. M. Parton, M. A. Phillips, A. Göhler, I. Davis, M. J. Booth. Isosense: frequency enhanced sensorless adaptive optics through structured illumination. Optica, 6, 370-379(2019).

    [34] M. Booth, D. Andrade, D. Burke, B. Patton, M. Žurauskas. Aberrations and adaptive optics in super-resolution microscopy. Microscopy, 64, 251-261(2015).

    [35] M. D. Torelli, N. A. Nunn, O. A. Shenderova. A perspective on fluorescent nanodiamond bioimaging. Small, 15, 1902151(2019).

    [36] N. Nunn, N. Prabhakar, P. Reineck, V. Magidson, E. Kamiya, W. F. Heinz, M. D. Torelli, J. Rosenholm, A. Zaitsev, O. Shenderova. Brilliant blue, green, yellow, and red fluorescent diamond particles: synthesis, characterization, and multiplex imaging demonstrations. Nanoscale, 11, 11584-11595(2019).

    [38] S. K. Singam, J. Motylewski, A. Monaco, E. Gjorgievska, E. Bourgeois, M. Nesládek, M. Giugliano, E. Goovaerts. Contrast induced by a static magnetic field for improved detection in nanodiamond fluorescence microscopy. Phys. Rev. Appl., 6, 064013(2016).

    [39] Z. R. Jones, N. J. Niemuth, M. E. Robinson, O. A. Shenderova, R. D. Klaper, R. J. Hamers. Selective imaging of diamond nanoparticles within complex matrices using magnetically induced fluorescence contrast. Environ. Sci. Nano, 7, 525-534(2020).

    [40] M. Capelli, P. Reineck, D. W. Lau, A. Orth, J. Jeske, M. Doherty, T. Ohshima, A. D. Greentree, B. C. Gibson. Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield. Nanoscale, 9, 9299-9304(2017).

    [41] L. J. Rogers, M. W. Doherty, M. S. Barson, S. Onoda, T. Ohshima, N. B. Manson. Singlet levels of the NV- centre in diamond. New J. Phys., 17, 013048(2015).

    [42] A. Kuwahata, T. Kitaizumi, K. Saichi, T. Sato, R. Igarashi, T. Ohshima, Y. Masuyama, T. Iwasaki, M. Hatano, F. Jelezko, M. Kusakabe, T. Yatsui, M. Sekino. Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications. Sci. Rep., 10, 2483(2020).

    [43] C.-D. Frese, S. Schiller. 3D tomographic magnetofluorescence imaging of nanodiamonds. Biomed. Opt. Express, 11, 533-553(2020).

    [44] I. Pope, L. Payne, G. Zoriniants, E. Thomas, O. Williams, P. Watson, W. Langbein, P. Borri. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds. Nat. Nanotechnol., 9, 940-946(2014).

    [45] A. Abulikemu, Y. Kainuma, T. An, M. Hase. Second-harmonic generation in bulk diamond based on inversion symmetry breaking by color centers. ACS Photon., 8, 988-993(2021).

    Tools

    Get Citation

    Copy Citation Text

    Mantas Žurauskas, Aneesh Alex, Jaena Park, Steve R. Hood, Stephen A. Boppart, "Fluorescent nanodiamonds for characterization of nonlinear microscopy systems," Photonics Res. 9, 2309 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems, Microscopy, and Displays

    Received: Jun. 15, 2021

    Accepted: Sep. 6, 2021

    Published Online: Nov. 2, 2021

    The Author Email: Stephen A. Boppart (boppart@illinois.edu)

    DOI:10.1364/PRJ.434236

    Topics