Laser & Optoelectronics Progress, Volume. 57, Issue 4, 041012(2020)

Remote Sensing Image Segmentation Method Based on Multi-Level Channel Attention

Shuai Yu and Xili Wang*
Author Affiliations
  • School of Computer Science, Shaanxi Normal University, Xi′an, Shaanxi 710119, China
  • show less
    Figures & Tables(13)
    Structure of RSIS-MLCA
    Channel attention module
    Partial training set (first line) and test set (second line) images in Massachusetts road data set
    Partial training set (first line) and test set (second line) images in Inria aerial image labeling data set
    Depth model segmentation results in Massachusetts road data set. (a) RGB images; (b) ground-truth images; (c) Unet segmentation results; (d) RSIS-MLCA segmentation results
    Training process curves in Massachusetts road data set. (a) xloss curve on training set; (b) RIOU curve on test set
    Depth model segmentation results in Inria aerial image labeling data set. (a) RGB images; (b) ground-truth images; (c) Unet segmentation results; (d) RSIS-MLCA segmentation results
    Training process curves in Inria aerial image labeling data set. (a) xloss curve on training set; (b) RIOU curve on test set
    • Table 1. Network parameters of RSIS-MLCA

      View table

      Table 1. Network parameters of RSIS-MLCA

      OperationParameter
      Input_dimensionOut_dimensionKernel_sizeStridePaddingImage_size
      Conv_1×2364311256×256
      AT_block_16464256×256
      Maxpool_16464220128×128
      Conv_2×264128311128×128
      AT_block_2128128128×128
      Maxpool_212812822064×64
      Conv_3×212825631164×64
      AT_block_325625664×64
      Maxpool_325625622032×32
      Conv_4×225651231132×32
      AT_block_451251232×32
      Maxpool_451251222016×16
      Conv_5512102431116×16
      AT_block_51024102416×16
      Deconv_6102451222032×32
      Conv_6102451231132×32
      Deconv_751225622064×64
      Conv_751225631164×64
      Deconv_8256128220128×128
      Conv_8256128311128×128
      Deconv_912864220256×256
      Conv_912864311256×256
      Conv_10641110256×256
    • Table 2. Evaluation results for each picture in Fig. 5 and test set%

      View table

      Table 2. Evaluation results for each picture in Fig. 5 and test set%

      ModelImage1Image2Image3Image4Image5Test set
      PRIOUPRIOUPRIOUPRIOUPRIOUPRIOU
      Unet88.070.089.950.487.963.074.641.488.576.683.074.6
      RSIS-MLCA89.380.991.283.490.170.581.265.690.780.385.276.5
    • Table 3. Evaluation results for each picture in Fig. 7 and test set%

      View table

      Table 3. Evaluation results for each picture in Fig. 7 and test set%

      ModelImage1Image2Image3Image4Image5Test set
      PRIOUPRIOUPRIOUPRIOUPRIOUPRIOU
      Unet89.389.990.170.291.876.293.387.781.171.280.671.1
      RSIS-MLCA89.791.291.473.094.383.894.389.187.378.385.675.5
    • Table 4. Comparison between existing results and RSIS-MLCA%

      View table

      Table 4. Comparison between existing results and RSIS-MLCA%

      MethodPRRF1-score
      FCN-4s[15]71.066.068.4
      FCN-no-skip[16]74.274.274.2
      FCN-8s[16]76.276.276.2
      SegNet[16]77.376.576.8
      ELU-SegNet[17]85.273.378.8
      ELU-SegNet-R[17]84.778.081.2
      RSIS-MLCA85.281.483.2
    • Table 5. Comparison between existing results and RSIS-MLCA in Inria aerial image labeling data set

      View table

      Table 5. Comparison between existing results and RSIS-MLCA in Inria aerial image labeling data set

      MethodRIOU/%
      FCN[18]53.96
      FCN-Skip[18]63.17
      FCN-MLP[18]64.88
      Mask R-CNN[19]59.37
      RiFCN[20]74.49
      RSIS-MLCA75.53
    Tools

    Get Citation

    Copy Citation Text

    Shuai Yu, Xili Wang. Remote Sensing Image Segmentation Method Based on Multi-Level Channel Attention[J]. Laser & Optoelectronics Progress, 2020, 57(4): 041012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jun. 22, 2019

    Accepted: Aug. 12, 2019

    Published Online: Feb. 20, 2020

    The Author Email: Xili Wang (wangxili@snnu.edu.cn)

    DOI:10.3788/LOP57.041012

    Topics