Laser & Optoelectronics Progress, Volume. 59, Issue 22, 2230001(2022)

Three dimensional-CNN Classification Method of Mural Multispectral Image Pigments Based on Multiscale Feature Fusion

Yunle Ding1, Huiqin Wang1、*, Ke Wang1, Zhan Wang2, and Gang Zhen2
Author Affiliations
  • 1School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
  • 2Shaanxi Provincial Institute of Cultural Relics Protection, Xi'an 710075, Shaanxi, China
  • show less
    Figures & Tables(15)
    Schematic diagrams of 2D-CNN and 3D-CNN. (a) 2D-CNN; (b) 3D-CNN
    Residual learning
    Schematic diagrams of atrous convolution kernel. (a) r=1; (b) r=2; (c) r=3
    Sserial hole convolution module
    Multiscale feature fusion module
    Schematic of MFAC-Res3D-CNN
    Multispectral image acquisition system of murals
    Multispectral images of murals in each band
    Simulated mural. (a) Simulated mural image; (b) pseudo color image; (c) truth image
    Comparison of different network classification results. (a) Truth image; (b) SVM; (c) 2D-CNN; (d) Res-3D-CNN; (e) MFAC-Res3D-CNN
    Comparison of different network classification details. (a) Truth image; (b) SVM;(c) 2D-CNN; (d) Res-3D-CNN; (e) MFAC-Res3D-CNN
    • Table 1. Sample of multispectral image dataset of simulated murals

      View table

      Table 1. Sample of multispectral image dataset of simulated murals

      NumberCategoryColorNumber of samples
      0Background871622
      1Mercuric sulfide57778
      2Mineral green49641
      3Chrome yellow294816
      4Graphite58765
      5Lazurite77061
      6Minium1417
    • Table 2. Classification confusion matrix of article model

      View table

      Table 2. Classification confusion matrix of article model

      CategoryBackgroundMercuric sulfideMineral greenChrome yellowGraphiteLazuriteMinium
      Background865044103616772548108221520
      Mercuric sulfide573571662217000
      Mineral green1677100478595000
      Chrome yellow2692911292031010
      Graphite2049071365657300
      Lazurite14520225218755170
      Minium135001001281
    • Table 3. Comparison of dataset classification accuracy results

      View table

      Table 3. Comparison of dataset classification accuracy results

      CategorySVM2D-CNNRes-3D-CNNMFAC-Res3D-CNN
      Background84.3697.4997.3499.24
      Mercuric sulfide92.3691.0595.4398.94
      Mineral green78.5392.3494.2596.41
      Chrome yellow88.5399.3297.5099.05
      Graphite80.3199.8894.6496.26
      Lazurite86.7284.9097.0197.99
      Minium63.7882.6389.8790.40
      OA84.7291.4597.5798.87
      AA82.0892.5195.1496.89
      Kappa78.6089.9895.4198.04
    • Table 4. Comparison of training and testing time of different algorithms

      View table

      Table 4. Comparison of training and testing time of different algorithms

      TimeSVM2D-CNNRes-3D-CNNMFAC-Res3D-CNN
      Train678.51037.81265.61301.5
      Test7.9810.7515.9517.05
    Tools

    Get Citation

    Copy Citation Text

    Yunle Ding, Huiqin Wang, Ke Wang, Zhan Wang, Gang Zhen. Three dimensional-CNN Classification Method of Mural Multispectral Image Pigments Based on Multiscale Feature Fusion[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2230001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Mar. 9, 2022

    Accepted: May. 9, 2022

    Published Online: Oct. 26, 2022

    The Author Email: Huiqin Wang (hqwang@xauat.edu.cn)

    DOI:10.3788/LOP202259.2230001

    Topics