Journal of Quantum Optics, Volume. 28, Issue 1, 46(2022)

Temperature-tunable Dual-band Ultra-thin Terahertz Metamaterial Absorber Based on Vanadium Dioxide

FAN Yi* and YANG Rong-cao
Author Affiliations
  • [in Chinese]
  • show less
    References(24)

    [1] [1] SLEASMAN T, IMANI M F, GOLLUB J N, et al. Dynamic metamaterial aperture for microwave imaging[J]. Appl Phys Lett, 2015, 107(20): 204104. DOI: 10.1063/ApplPhysLett.1.4935941.

    [2] [2] LEE Y U, POSNER C, ZHAO Jun-xiang, et al. Imaging of cell morphology changes via metamaterial-assisted photobleaching microscopy[J]. Nano Lett, 2021, 21: 1716-1721. DOI: 10.1021/acs.Nanolett.0c04529.

    [3] [3] SADEQI A, NEJAD H R, SONKUSALE S. Low-cost metamaterial-on-paper chemical sensor[J]. Opt Express, 2017, 25(14): 16092. DOI: 10.1364/OE. 25.016092.

    [4] [4] SUN R, LI W Y, MENG T H, et al. Design and optimization of terahertz metamaterial sensor with high sensing performance[J]. Opt Commun, 2021, 494: 127051. DOI: 10.1016/j.optcom.2021.127051.

    [5] [5] XAVIER G V R, SERRESA J R, COSTA E G, et al. Design and application of a metamaterial superstrateon a bio-inspired antenna for partial discharge detection through dielectric windows[J]. Sensors, 2019, 19: 4255. DOI: 10.3390/s19194255.

    [6] [6] MONFARED Y E, QASYMEH M. Graphene-assisted infrared plasmonic metamaterial absorber for gas detection[J]. Results Phys, 2021, 23: 103986. DOI: 10.1016/j.rinp.2021.103986.

    [7] [7] BAI J J, GE M L, LI J N, et al. Numerical investigation of broadband THz metamaterial absorber with double composite structure layer[J]. Opt Commun, 2018, 423: 63-68. DOI: 10.1016/j.optcom.2018.04.011.

    [8] [8] SONG Z Y, JIANG M W, DENG Y D, et al. Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material[J]. Opt Commun, 2020, 464: 125494. DOI: 10.1016/j.optcom.2020.125494.

    [9] [9] ZHENG Q, MENG D J, YANG F M, et al. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators[J]. Opt Express, 2021, 29(13): 20275-20285. DOI: 10.1364/OE.430068.

    [10] [10] LIU J J, HONG Z. Mechanically tunable dual frequency THz metamaterial filter[J]. Opt Commun, 2018, 426: 598-601. DOI: 10.1016/j.optcom.2018.06.019.

    [11] [11] HUANG Y, NAKAMURA K, TAKIDA Y, et al. Actively tunable THz filter based on an electromagnetically induced transparency analog hybridized with a MEMS metamaterial[J]. Sci Rep, 2020, 10: 20807. DOI: 10.1038/s41598-020-77922-1.

    [12] [12] ZOU M Q, SU M Y, YU H. Ultra-broadband and wide-angle terahertz polarization converter based on symmetrical anchor-shaped metamaterial[J]. Opt Mater, 2020, 107: 110062. DOI: 10.1016/j.optmat.2020.110062.

    [13] [13] PAN W, CHEN Q, MA Y, et al. Design and analysis of a broadband terahertz polarization converter with significant asymmetric transmission enhancement[J]. Opt Commun, 2020, 459: 124901. DOI: 10.1016/j.optcom.2019.124901.

    [14] [14] TAO H, BINGHAM C M, STRIKWERDA A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Phys Rev B, 2008, 78(24): 241103. DOI: 10.1103/PhysRevB.78.241103.

    [15] [15] PAN M, HUANG H Z, FAN B D, et al. Theoretical design of a triple-band perfect metamaterial absorber based on graphene with wide-angle insensitivity[J]. Results Phys, 2021, 23: 104037. DOI: 10.1016/j.rinp.2021.104037.

    [16] [16] LIU Y, HUANG R, OUYANG Z B. Numerical investigation of graphene and STO based tunable terahertz absorber with switchable bifunctionality of broadband and narrowband absorption [J]. Nanomaterials, 2021, 11: 2044. DOI: 10.3390/nano11082044.

    [17] [17] CHENG Y Z, LIU J Q, CHEN F, et al. Optically switchable broadband metasurface absorber based on squarering shaped photoconductive silicon for terahertz waves[J]. Phs Lett A, 2021, 402: 127345. DOI: 10.1016/j.physleta.2021.127345.

    [18] [18] LIU Y C, QIAN Y X, HU F R, et al. A dynamically adjustable broadband terahertz absorber based on avanadium dioxide hybrid metamaterial[J]. Results Phys, 2020, 19: 103384. DOI: 10.1016/j.rinp.2020.103384.

    [19] [19] LV T T, DONG G H, QIN C H, et al. Switchable dual-band to broadband terahertzmetamaterial absorber incorporating a VO2phase transition[J]. Opt Express, 2021, 29: 5437-5447. DOI: 10.1364/OE.418020.

    [20] [20] LING X Y, XIAO Z Y, ZHENG X X. Tunable terahertz metamaterial absorber and the sensing application[J]. J Mater Sci: Mater Electron, 2018, 29: 1497-1503. DOI: 10.1007/s10854-017-8058-0.

    [21] [21] SMITH D R, VIER D C, KOSCHNY T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials [J]. Phys Rev E, 2005, 71: 036617. DOI: 10.1103/PhysRevE.71.0.6617.

    [22] [22] YUAN S, YANG R C, XU J P, et al. Photoexcited switchable single-/dual-band terahertz metamaterial absorber[J]. Mater Res Express, 2019, 6: 075807. DOI: 10.1088/2053-1591/ab1962.

    [23] [23] YE Y Q, JIN Y, HE S L. Omnidirectional, polarization-insensitive andbroadband thin absorber in the terahertz regime[J]. J Opt Soc Am B, 2010, 27(3): 498. DOI: 10.1364/josab.27.000498.

    [24] [24] ZHOU J F, ZHANG L, TUTTLE G, et al. Negative index materials using simple short wire pairs[J]. Phys Rev B, 2006, 73: 041101. DOI: 10.1103/PhysRevB.73.041101.

    Tools

    Get Citation

    Copy Citation Text

    FAN Yi, YANG Rong-cao. Temperature-tunable Dual-band Ultra-thin Terahertz Metamaterial Absorber Based on Vanadium Dioxide[J]. Journal of Quantum Optics, 2022, 28(1): 46

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 9, 2021

    Accepted: --

    Published Online: Apr. 21, 2022

    The Author Email: FAN Yi (1214486054@qq.com)

    DOI:10.3788/jqo20222801.0702

    Topics