Chinese Journal of Lasers, Volume. 45, Issue 8, 802007(2018)

Influences of Laser-Arc Hybrid Surfacing Parameters with Self-Shielded Flux-Cored Wire on Droplet Transition

Liu Xiyang1,2, Sun Fenglian1, Wang Junyu2, and Zhao Yumin2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    Figures & Tables(31)
    Surfacing and collecting system
    Schematic of laser-arc position and angle
    Results of arc surfacing and hybrid surfacing. (a) Distributions of voltage probability density; (b) distributions of current probability density
    Images of droplets. (a) d=1 mm; (b) d=2 mm; (c) d=3 mm; (d) arc surfacing
    Images of droplet transition in arc surfacing when α=30°
    Images of droplet transition in hybrid surfacing when α=30°
    Images of droplet transition in arc surfacing when α=65°
    Images of droplet transition in hybrid surfacing when α=65°
    Images of droplet transition when laser is prepositioned and DLA=0 mm
    Images of droplet transition when laser is prepositioned and DLA=-2 mm
    Images of droplet transition when laser is prepositioned and DLA=-4 mm
    Images of droplet transition when laser is postpositioned and DLA=0 mm
    Images of droplet transition when laser is postpositioned and DLA=-2 mm
    Images of droplet transition when laser is postpositioned and DLA=-4 mm
    Images of droplet transition when laser is prepositioned and DLA=+2 mm
    Images of droplet transition when laser is prepositioned and DLA=+4 mm
    Images of droplet transition when laser is prepositioned and DLA=+8 mm
    Images of droplet transition when laser is postpositioned and DLA=+2 mm
    Images of droplet transition when laser is postpositioned and DLA=+4 mm
    Images of droplet transition when laser is postpositioned and DLA=+8 mm
    High speed camera figures. (a) Hybrid surfacing; (b) arc surfacing
    High speed camera figure of hybrid surfacing with solid wire
    High speed camera figures of surfacing with self-shielded flux-cored wire. (a) Arc surfacing; (b) hybrid surfacing
    • Table 1. Experimental scheme

      View table

      Table 1. Experimental scheme

      ExperimentNo.Anglebetweenlaser andarc a /(°)Spotdiameterd /mmDistancebetweenlaser andarc DLA /mmPositionrelationbetweenlaserand arcLaserpowerPL /kWWireextensionlengthL /mmWeldingvoltageU /VWeldingcurrentI /AWeldingspeedv /(m·min-1)
      1301,2,30Laser preposition2.025262200.6
      230, 6520Laser preposition2.025262200.6
      3302-4, -2, 0,+2, +4, +8Laser preposition,laser postposition2.025262200.6
      4302-2, 0,+2,Laser preposition1.0, 2.0,4.025262200.6
    • Table 2. Parameter table of laser-arc angle

      View table

      Table 2. Parameter table of laser-arc angle

      ParameterArcHybrid surfacingArcHybrid surfacing
      Angle between laser incidence direction and normal direction θ /(°)-13-13
      Angle between wire feed direction and normal direction β /(°)17175252
      Angel between laser and wire α /(°)-30-65
    • Table 3. Electric arc parameters of arc surfacing and hybrid surfacing

      View table

      Table 3. Electric arc parameters of arc surfacing and hybrid surfacing

      Surfacing heatsource modeAveragearc voltageU /VStandarddeviationof arcvoltageS(U) /VVariationcoefficient ofarc voltagek(U) /%AveragearccurrentI /AStandarddeviationof arccurrentS(I) /AVariationcoefficientof arccurrentk(I) /%
      d=1 mm23.831.365.69193.4225.5213.20
      Hybridsurfacingd=2 mm23.941.305.42184.4522.7712.34
      d=3 mm24.101.727.14156.5333.8421.62
      Arc surfacing23.611.516.39217.9929.6713.61
    • Table 4. Electric arcparameters of arc surfacing and hybrid surfacing when α=30°

      View table

      Table 4. Electric arcparameters of arc surfacing and hybrid surfacing when α=30°

      Surfacing heatsource modeAverage arcvoltageU /VStandarddeviation of arcvoltage S(U) /VVariationcoefficient ofarc voltagek(U) /%Average arccurrent I /AStandarddeviation ofarc currentS(I) /AVariationcoefficient ofarc currentk(I) /%
      Hybrid surfacing23.731.426.00204.8025.5512.47
      Arc surfacing23.401.647.01238.5534.6514.52
    • Table 5. Arc droplet parameters at different laser-arc positions

      View table

      Table 5. Arc droplet parameters at different laser-arc positions

      Distancebetweenlaser andarc DLA /mmPositionbetweenlaser and arcTotal framesof samplingimage FZ /frameTotal framesof arc biasedtoward laserpoint F1 /frameProportionof arcbiased towardlaser point /%Number ofdroplettransitions /countsAverageframe ofdroplettransition /frameAveragedroplet transfercycle T /ms
      +8Laser preposition543250698679170
      +8Laser postposition54322052387776194
      +4Laser preposition56365431968704176
      +4Laser postposition57035444967814204
      +2Laser preposition590859011006985246
      +2Laser postposition5364536410051073268
      0Laser preposition577153109212480120
      0Laser postposition543313802511493124
      -2Laser preposition522850929710523131
      -2Laser postposition53643879727766192
      -4Laser preposition53645297991438396
      -4Laser postposition55005123938687172
    • Table 6. Weld formation at different laser-arc positions

      View table

      Table 6. Weld formation at different laser-arc positions

      Surfacing heat source modeImage of cross sectionof welding beadWeld penetrationh /mmBead appearanceparameter Y
      Arc surfacing1.900.24
      Distance between laser andarc DLA=-2 mm1.000.27
      Laser in frontDistance between laser andarc DLA=+4 mm1.880.20
      Distance between laser andarc DLA=-2 mm1.200.28
      Laser behindDistance between laser andarc DLA=+4 mm3.200.25
    • Table 7. Characteristics of droplet transition in arc surfacing

      View table

      Table 7. Characteristics of droplet transition in arc surfacing

      ParameterImage of droplet transitionMode of droplet transitionAverage droplet transfer cycle T /ms
      ContentRepelled transfer180
    • Table 8. Characteristics of droplet transition in hybrid surfacing

      View table

      Table 8. Characteristics of droplet transition in hybrid surfacing

      Laser powerPL /kWDLA=-2 mmDLA=0 mmDLA=+2 mm
      ImageModeT /msImageModeT /msImageModeT /ms
      1.0Repelledtransfer161Repelledtransfer113Repelledtransfer215
      2.0Repelledtransfer125Repelledtransfer143Repelledtransfer285
      4.0Explosivetransfer65Explosivetransfer116Repelledtransfer218
    Tools

    Get Citation

    Copy Citation Text

    Liu Xiyang, Sun Fenglian, Wang Junyu, Zhao Yumin. Influences of Laser-Arc Hybrid Surfacing Parameters with Self-Shielded Flux-Cored Wire on Droplet Transition[J]. Chinese Journal of Lasers, 2018, 45(8): 802007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Feb. 9, 2018

    Accepted: --

    Published Online: Aug. 11, 2018

    The Author Email:

    DOI:10.3788/CJL201845.0802007

    Topics