Chinese Optics Letters, Volume. 17, Issue 10, 100009(2019)

Recent achievements on underwater optical wireless communication [Invited]

Giulio Cossu*
Author Affiliations
  • Scuola Superiore Sant’Anna, TeCIP Institute, 56124 Pisa, Italy
  • show less
    Figures & Tables(13)
    Radio frequency attenuation in water[79" target="_self" style="display: inline;">–9].
    Attenuation curve at different wavelengths[10].
    Underwater wireless communication scenario.
    Attenuation curve in the visible region, at increasing water turbidity[10].
    Simulated received optical power as a function of the link distance at different values of water turbidity. Straight gray line indicates the receiver sensitivity.
    Examples of two experimental setups for underwater demonstrations in the laboratory environment[28,34].
    (a) Picture of the WHOI optical modem; (b) test node with an optical modem installed on top[23].
    Experimental setup of the sea-trial measurements (left); scheme of the UOWC modem (right)[36].
    (a) Scheme of the UOWC modem and (b) picture of one of them. The three layers contain a monitor PD, the LEDs, and the receiver[34]. (c) Experimental setup of the sea-trial measurements.
    • Table 1. Comparison of the Three UWC Technologies

      View table
      View in Article

      Table 1. Comparison of the Three UWC Technologies

      ParameterAcousticRF WavesOptical Waves
      Link range<25km<10km1–100 m
      Data rate<12kbit/sFew Mbit/s1–1000 Mbit/s
      Attenuation0.1–4 dB/km10–180 dB/m0.4–11 dB/m
      LatencyHighLowLow
      CostHighHighLow
      SizeHighHighLow
    • Table 2. Typical Absorption and Scattering Coefficients[12]

      View table
      View in Article

      Table 2. Typical Absorption and Scattering Coefficients[12]

      Water Typesa(λ)b(λ)k(λ)
      Pure sea0.050.010.06
      Clear ocean0.110.040.15
      Coastal ocean0.20.20.4
      Turbid harbor0.31.92.2
    • Table 3. Comparison Between Optical Sources for UOWC

      View table
      View in Article

      Table 3. Comparison Between Optical Sources for UOWC

      ParameterLEDLD
      Optical power1 W10–1000 mW
      Optical bandwidth20–50 nm1–2 nm
      Electrical bandwidth10–15 MHz0.6–1 GHz
      Beam emission angle120°20°
      Thermal managementMildly neededStrongly needed
      CostLowHigh
    • Table 4. Noticeable Experimental Results for UOWC Systems from 2015

      View table
      View in Article

      Table 4. Noticeable Experimental Results for UOWC Systems from 2015

      YearBit Rate (Mbit/s)Distance (m)WaterOptical Sourceλ (nm)TestModulation FormatRef.
      20151070CleanLEDN.A.OceanOOK-NRZ[23]
      2015200.3CleanLaserRedWater tankOOK-NRZ[34]
      201514504.8CleanLD405Water tankOFDM[40]
      201523007CleanLD520Water tankOOK-NRZ[41]
      201548005.4CleanLD450Water tankOFDM[27]
      2016150020CleanLD450Water tankOOK-NRZ[42]
      20162005.4CleanμLED440Water tankOOK-NRZ[43]
      20161254.8TurbidLaser515HarborOOK-NRZ[36]
      20173N.A.N.A.LEDN.A.Water tankN.A.[44]
      2018270034.5CleanLD520Water tankOOK-NRZ[45]
      20181010TurbidLED470HarborManchester[35]
      201897002.3CleanLDRGBWater tankOOK-NRZ[46]
      201930,00012.5CleanLD487Water tankPAM4[30]
      201930001.2CleanLEDBlueWater tankOFDM[28]
      2019500100CleanLD520Water tankOOK-NRZ[47]
      20193014.7CleanLD450Water tankOOK-NRZ[48]
      2019503CleanLD450Water tank16-QAM[49]
    Tools

    Get Citation

    Copy Citation Text

    Giulio Cossu, "Recent achievements on underwater optical wireless communication [Invited]," Chin. Opt. Lett. 17, 100009 (2019)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: UNDERWATER WIRELESS OPTICAL COMMUNICATION

    Received: Jul. 29, 2019

    Accepted: Sep. 12, 2019

    Published Online: Oct. 15, 2019

    The Author Email: Giulio Cossu (g.cossu@santannapisa.it)

    DOI:10.3788/COL201917.100009

    Topics